These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 22988026)

  • 1. Using computational and mechanical models to study animal locomotion.
    Miller LA; Goldman DI; Hedrick TL; Tytell ED; Wang ZJ; Yen J; Alben S
    Integr Comp Biol; 2012 Nov; 52(5):553-75. PubMed ID: 22988026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thrash, flip, or jump: the behavioral and functional continuum of terrestrial locomotion in teleost fishes.
    Gibb AC; Ashley-Ross MA; Hsieh ST
    Integr Comp Biol; 2013 Aug; 53(2):295-306. PubMed ID: 23704366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of muscle function during locomotion: accommodating variable conditions.
    Biewener AA; Gillis GB
    J Exp Biol; 1999 Dec; 202(Pt 23):3387-96. PubMed ID: 10562521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotion of arthropods in aquatic environment and their applications in robotics.
    Kwak B; Bae J
    Bioinspir Biomim; 2018 May; 13(4):041002. PubMed ID: 29508773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Animal movement, mechanical tuning and coupled systems.
    Daniel TL; Tu MS
    J Exp Biol; 1999 Dec; 202(Pt 23):3415-21. PubMed ID: 10562524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the applicability of the decentralized control mechanism extracted from the true slime mold: a robotic case study with a serpentine robot.
    Sato T; Kano T; Ishiguro A
    Bioinspir Biomim; 2011 Jun; 6(2):026006. PubMed ID: 21502703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multibody system dynamics for bio-inspired locomotion: from geometric structures to computational aspects.
    Boyer F; Porez M
    Bioinspir Biomim; 2015 Mar; 10(2):025007. PubMed ID: 25811531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotion with flexible propulsors: II. Computational modeling of pectoral fin swimming in sunfish.
    Mittal R; Dong H; Bozkurttas M; Lauder G; Madden P
    Bioinspir Biomim; 2006 Dec; 1(4):S35-41. PubMed ID: 17671316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological clockwork underlying adaptive rhythmic movements.
    Iwasaki T; Chen J; Friesen WO
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):978-83. PubMed ID: 24395788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of neuro-musculo-skeletal system for human locomotion under position constraint condition.
    Ni J; Hiramatsu S; Kato A
    J Biomech Eng; 2003 Aug; 125(4):499-506. PubMed ID: 12968574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait.
    De Groote F; Falisse A
    Proc Biol Sci; 2021 Mar; 288(1946):20202432. PubMed ID: 33653141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanics, modulation and modelling: how muscles actuate and control movement.
    Higham TE; Biewener AA; Delp SL
    Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1463-5. PubMed ID: 21502117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terrestrial locomotion-where do we stand, where are we going? An introduction to the symposium.
    Blob RW; Higham TE
    Integr Comp Biol; 2014 Dec; 54(6):1051-7. PubMed ID: 25061044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable formations of self-propelled fish-like swimmers induced by hydrodynamic interactions.
    Dai L; He G; Zhang X; Zhang X
    J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30333246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotics-inspired biology.
    Gravish N; Lauder GV
    J Exp Biol; 2018 Mar; 221(Pt 7):. PubMed ID: 29599417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Honeybees use their wings for water surface locomotion.
    Roh C; Gharib M
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24446-24451. PubMed ID: 31740588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological self stabilization of locomotion gaits: illustration on a few examples from bio-inspired locomotion.
    Chevallereau C; Boyer F; Porez M; Mauny J; Aoustin Y
    Bioinspir Biomim; 2017 Jun; 12(4):046006. PubMed ID: 28631623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory feedback in cockroach locomotion: current knowledge and open questions.
    Ayali A; Couzin-Fuchs E; David I; Gal O; Holmes P; Knebel D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Sep; 201(9):841-50. PubMed ID: 25432627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modelling of muscle fibre operating ranges in the hindlimb of a small ground bird (Eudromia elegans), with implications for modelling locomotion in extinct species.
    Bishop PJ; Michel KB; Falisse A; Cuff AR; Allen VR; De Groote F; Hutchinson JR
    PLoS Comput Biol; 2021 Apr; 17(4):e1008843. PubMed ID: 33793558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.