These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 22988031)
41. Cross-talk between endocytic clearance and secretion in macrophages. Kzhyshkowska J; Krusell L Immunobiology; 2009; 214(7):576-93. PubMed ID: 19457577 [TBL] [Abstract][Full Text] [Related]
42. Class A1 scavenger receptors in cardiovascular diseases. Ben J; Zhu X; Zhang H; Chen Q Br J Pharmacol; 2015 Dec; 172(23):5523-30. PubMed ID: 25651870 [TBL] [Abstract][Full Text] [Related]
43. The microtubule-binding protein Hook3 interacts with a cytoplasmic domain of scavenger receptor A. Sano H; Ishino M; Krämer H; Shimizu T; Mitsuzawa H; Nishitani C; Kuroki Y J Biol Chem; 2007 Mar; 282(11):7973-81. PubMed ID: 17237231 [TBL] [Abstract][Full Text] [Related]
44. Regulation of class A scavenger receptor-mediated cell adhesion and surface localization by PI3K: identification of a regulatory cytoplasmic motif. Cholewa J; Nikolic D; Post SR J Leukoc Biol; 2010 Mar; 87(3):443-9. PubMed ID: 19952357 [TBL] [Abstract][Full Text] [Related]
45. Scavenger receptor-A (CD204): a two-edged sword in health and disease. Kelley JL; Ozment TR; Li C; Schweitzer JB; Williams DL Crit Rev Immunol; 2014; 34(3):241-61. PubMed ID: 24941076 [TBL] [Abstract][Full Text] [Related]
46. Identification of DEAD-Box RNA Helicase DDX41 as a Trafficking Protein That Involves in Multiple Innate Immune Signaling Pathways in a Zebrafish Model. Ma JX; Li JY; Fan DD; Feng W; Lin AF; Xiang LX; Shao JZ Front Immunol; 2018; 9():1327. PubMed ID: 29942316 [TBL] [Abstract][Full Text] [Related]
47. Scavenger receptors: a key player in cardiovascular diseases. Ashraf MZ; Sahu A Biomol Concepts; 2012 Aug; 3(4):371-80. PubMed ID: 25436543 [TBL] [Abstract][Full Text] [Related]
48. Galectin-3-binding protein: A multitask glycoprotein with innate immunity functions in viral and bacterial infections. Loimaranta V; Hepojoki J; Laaksoaho O; Pulliainen AT J Leukoc Biol; 2018 Oct; 104(4):777-786. PubMed ID: 29882603 [TBL] [Abstract][Full Text] [Related]
49. Identification of mammalian orthologs associates PYPAF5 with distinct functional roles. Albrecht M; Domingues FS; Schreiber S; Lengauer T FEBS Lett; 2003 Mar; 538(1-3):173-7. PubMed ID: 12633874 [TBL] [Abstract][Full Text] [Related]
50. Should we target signal pathways instead of single mediators in the treatment of sepsis? Wratten ML; Brendolan A; Ronco C; La Greca G; Tetta C Contrib Nephrol; 2001; (132):400-14. PubMed ID: 11395908 [No Abstract] [Full Text] [Related]
51. Internalization of scavenger receptor ligands by cortical neurons. Liang C; Chavan V; Mukherjee K Matters (Zur); 2017 May; 2017():. PubMed ID: 30148136 [TBL] [Abstract][Full Text] [Related]
52. Identification of scavenger receptors and thrombospondin-type-1 repeat proteins potentially relevant for plastid recognition in Sacoglossa. Melo Clavijo J; Frankenbach S; Fidalgo C; Serôdio J; Donath A; Preisfeld A; Christa G Ecol Evol; 2020 Nov; 10(21):12348-12363. PubMed ID: 33209293 [TBL] [Abstract][Full Text] [Related]
53. Scavenger receptor A in immunity and autoimmune diseases: Compelling evidence for targeted therapy. Xie Y; Jia Y; Li Z; Hu F Expert Opin Ther Targets; 2022 May; 26(5):461-477. PubMed ID: 35510370 [TBL] [Abstract][Full Text] [Related]
54. Exploring scavenger receptor class F member 2 and the importance of scavenger receptor family in prediagnostic diseases. Vo TT; Kong G; Kim C; Juang U; Gwon S; Jung W; Nguyen H; Kim SH; Park J Toxicol Res; 2023 Jul; 39(3):341-353. PubMed ID: 37398563 [TBL] [Abstract][Full Text] [Related]
55. Differential occurrence of protein intrinsic disorder in the cytoplasmic signaling domains of cell receptors. Sigalov AB; Uversky VN Self Nonself; 2011 Jan; 2(1):55-72. PubMed ID: 21776336 [TBL] [Abstract][Full Text] [Related]
56. Transcriptomic analysis of spleen-derived macrophages in response to lipopolysaccharide shows dependency on the MyD88-independent pathway in Chinese giant salamanders (Andrias davidianus). Deng J; Han M; Gong J; Ma H; Hao Y; Fang C; Zhang H; Li J; Jiang W BMC Genomics; 2024 Oct; 25(1):1005. PubMed ID: 39465384 [TBL] [Abstract][Full Text] [Related]
57. Mitochondrial connections with immune system in Zebrafish. do Amaral MA; Paredes LC; Padovani BN; Mendonça-Gomes JM; Montes LF; Câmara NOS; Morales Fénero C Fish Shellfish Immunol Rep; 2021 Dec; 2():100019. PubMed ID: 36420514 [TBL] [Abstract][Full Text] [Related]
58. Transcriptome Profiling Reveals a Divergent Adaptive Response to Hyper- and Hypo-Salinity in the Yellow Drum, Zhao X; Sun Z; Gao T; Song N Animals (Basel); 2021 Jul; 11(8):. PubMed ID: 34438658 [TBL] [Abstract][Full Text] [Related]
59. Specific function and modulation of teleost monocytes/macrophages: polarization and phagocytosis. Lu XJ; Chen J Zool Res; 2019 May; 40(3):146-150. PubMed ID: 31011129 [TBL] [Abstract][Full Text] [Related]
60. A Novel Lipopolysaccharide Recognition Mechanism Mediated by Internalization in Teleost Macrophages. Lu XJ; Ning YJ; Liu H; Nie L; Chen J Front Immunol; 2018; 9():2758. PubMed ID: 30542348 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]