BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 22988085)

  • 1. Type II p21-activated kinases (PAKs) are regulated by an autoinhibitory pseudosubstrate.
    Ha BH; Davis MJ; Chen C; Lou HJ; Gao J; Zhang R; Krauthammer M; Halaban R; Schlessinger J; Turk BE; Boggon TJ
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16107-12. PubMed ID: 22988085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate and inhibitor specificity of the type II p21-activated kinase, PAK6.
    Gao J; Ha BH; Lou HJ; Morse EM; Zhang R; Calderwood DA; Turk BE; Boggon TJ
    PLoS One; 2013; 8(10):e77818. PubMed ID: 24204982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signaling, Regulation, and Specificity of the Type II p21-activated Kinases.
    Ha BH; Morse EM; Turk BE; Boggon TJ
    J Biol Chem; 2015 May; 290(21):12975-83. PubMed ID: 25855792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rho family GTPase signaling through type II p21-activated kinases.
    Chetty AK; Ha BH; Boggon TJ
    Cell Mol Life Sci; 2022 Nov; 79(12):598. PubMed ID: 36401658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Group I and II mammalian PAKs have different modes of activation by Cdc42.
    Baskaran Y; Ng YW; Selamat W; Ling FT; Manser E
    EMBO Rep; 2012 Jun; 13(7):653-9. PubMed ID: 22653441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the SH3 domain of betaPIX in complex with a high affinity peptide from PAK2.
    Hoelz A; Janz JM; Lawrie SD; Corwin B; Lee A; Sakmar TP
    J Mol Biol; 2006 Apr; 358(2):509-22. PubMed ID: 16527308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CDC42 binds PAK4 via an extended GTPase-effector interface.
    Ha BH; Boggon TJ
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):531-536. PubMed ID: 29295922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR binding and crystal structure reveal that intrinsically-unstructured regulatory domain auto-inhibits PAK4 by a mechanism different from that of PAK1.
    Wang W; Lim L; Baskaran Y; Manser E; Song J
    Biochem Biophys Res Commun; 2013 Aug; 438(1):169-74. PubMed ID: 23876315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of p21-activated kinase 6 by MAP kinase kinase 6 and p38 MAP kinase.
    Kaur R; Liu X; Gjoerup O; Zhang A; Yuan X; Balk SP; Schneider MC; Lu ML
    J Biol Chem; 2005 Feb; 280(5):3323-30. PubMed ID: 15550393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The subcellular localization of type I p21-activated kinases is controlled by the disordered variable region and polybasic sequences.
    Sun X; Su VL; Calderwood DA
    J Biol Chem; 2019 Sep; 294(39):14319-14332. PubMed ID: 31391252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an autoinhibitory domain of p21-activated protein kinase 5.
    Ching YP; Leong VY; Wong CM; Kung HF
    J Biol Chem; 2003 Sep; 278(36):33621-4. PubMed ID: 12860998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of physiological phosphorylation sites by p21-activated kinase 4.
    Chetty AK; Sexton JA; Ha BH; Turk BE; Boggon TJ
    J Struct Biol; 2020 Sep; 211(3):107553. PubMed ID: 32585314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Group I p21-activated kinases regulate thyroid cancer cell migration and are overexpressed and activated in thyroid cancer invasion.
    McCarty SK; Saji M; Zhang X; Jarjoura D; Fusco A; Vasko VV; Ringel MD
    Endocr Relat Cancer; 2010 Dec; 17(4):989-99. PubMed ID: 20817787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knockdown of PAK4 or PAK1 inhibits the proliferation of mutant KRAS colon cancer cells independently of RAF/MEK/ERK and PI3K/AKT signaling.
    Tabusa H; Brooks T; Massey AJ
    Mol Cancer Res; 2013 Feb; 11(2):109-21. PubMed ID: 23233484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Group I p21-activated kinases (PAKs) promote tumor cell proliferation and survival through the AKT1 and Raf-MAPK pathways.
    Menges CW; Sementino E; Talarchek J; Xu J; Chernoff J; Peterson JR; Testa JR
    Mol Cancer Res; 2012 Sep; 10(9):1178-88. PubMed ID: 22798428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal Structures of the p21-activated kinases PAK4, PAK5, and PAK6 reveal catalytic domain plasticity of active group II PAKs.
    Eswaran J; Lee WH; Debreczeni JE; Filippakopoulos P; Turnbull A; Fedorov O; Deacon SW; Peterson JR; Knapp S
    Structure; 2007 Feb; 15(2):201-13. PubMed ID: 17292838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of the SH3 domain of beta-PIX and its interaction with alpha-p21 activated kinase (PAK).
    Mott HR; Nietlispach D; Evetts KA; Owen D
    Biochemistry; 2005 Aug; 44(33):10977-83. PubMed ID: 16101281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structures and biophysical analysis of full-length group A PAKs reveal they are monomeric and auto-inhibited in
    Sorrell FJ; Kilian LM; Elkins JM
    Biochem J; 2019 Apr; 476(7):1037-1051. PubMed ID: 30858169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminal interaction domain implicates PAK4 in translational regulation and reveals novel cellular localization signals.
    Baldassa S; Calogero AM; Colombo G; Zippel R; Gnesutta N
    J Cell Physiol; 2010 Sep; 224(3):722-33. PubMed ID: 20578242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity profiling of Pak kinases allows identification of novel phosphorylation sites.
    Rennefahrt UE; Deacon SW; Parker SA; Devarajan K; Beeser A; Chernoff J; Knapp S; Turk BE; Peterson JR
    J Biol Chem; 2007 May; 282(21):15667-78. PubMed ID: 17392278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.