These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 22988098)
1. Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Qualley AV; Widhalm JR; Adebesin F; Kish CM; Dudareva N Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16383-8. PubMed ID: 22988098 [TBL] [Abstract][Full Text] [Related]
2. Exploring genes involved in benzoic acid biosynthesis in the Populus davidiana transcriptome and their transcriptional activity upon methyl jasmonate treatment. Park SB; Kim JY; Han JY; Ahn CH; Park EJ; Choi YE J Chem Ecol; 2017 Dec; 43(11-12):1097-1108. PubMed ID: 29129016 [TBL] [Abstract][Full Text] [Related]
3. A peroxisomal thioesterase plays auxiliary roles in plant β-oxidative benzoic acid metabolism. Adebesin F; Widhalm JR; Lynch JH; McCoy RM; Dudareva N Plant J; 2018 Mar; 93(5):905-916. PubMed ID: 29315918 [TBL] [Abstract][Full Text] [Related]
4. A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Van Moerkercke A; Schauvinhold I; Pichersky E; Haring MA; Schuurink RC Plant J; 2009 Oct; 60(2):292-302. PubMed ID: 19659733 [TBL] [Abstract][Full Text] [Related]
5. Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Orlova I; Marshall-Colón A; Schnepp J; Wood B; Varbanova M; Fridman E; Blakeslee JJ; Peer WA; Murphy AS; Rhodes D; Pichersky E; Dudareva N Plant Cell; 2006 Dec; 18(12):3458-75. PubMed ID: 17194766 [TBL] [Abstract][Full Text] [Related]
6. Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers. Klempien A; Kaminaga Y; Qualley A; Nagegowda DA; Widhalm JR; Orlova I; Shasany AK; Taguchi G; Kish CM; Cooper BR; D'Auria JC; Rhodes D; Pichersky E; Dudareva N Plant Cell; 2012 May; 24(5):2015-30. PubMed ID: 22649270 [TBL] [Abstract][Full Text] [Related]
7. A peroxisomal β-oxidative pathway contributes to the formation of C6-C1 aromatic volatiles in poplar. Lackus ND; Schmidt A; Gershenzon J; Köllner TG Plant Physiol; 2021 Jun; 186(2):891-909. PubMed ID: 33723573 [TBL] [Abstract][Full Text] [Related]
8. Understanding in vivo benzenoid metabolism in petunia petal tissue. Boatright J; Negre F; Chen X; Kish CM; Wood B; Peel G; Orlova I; Gang D; Rhodes D; Dudareva N Plant Physiol; 2004 Aug; 135(4):1993-2011. PubMed ID: 15286288 [TBL] [Abstract][Full Text] [Related]
9. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis. Long MC; Nagegowda DA; Kaminaga Y; Ho KK; Kish CM; Schnepp J; Sherman D; Weiner H; Rhodes D; Dudareva N Plant J; 2009 Jul; 59(2):256-65. PubMed ID: 19292760 [TBL] [Abstract][Full Text] [Related]
10. A peroxisomally localized acyl-activating enzyme is required for volatile benzenoid formation in a Petuniaxhybrida cv. 'Mitchell Diploid' flower. Colquhoun TA; Marciniak DM; Wedde AE; Kim JY; Schwieterman ML; Levin LA; Van Moerkercke A; Schuurink RC; Clark DG J Exp Bot; 2012 Aug; 63(13):4821-33. PubMed ID: 22771854 [TBL] [Abstract][Full Text] [Related]
11. The Peroxisomal β-Oxidative Pathway and Benzyl Alcohol O-Benzoyltransferase HSR201 Cooperatively Contribute to the Biosynthesis of Salicylic Acid. Kotera Y; Komori H; Tasaki K; Takagi K; Imano S; Katou S Plant Cell Physiol; 2023 Jul; 64(7):758-770. PubMed ID: 37098219 [TBL] [Abstract][Full Text] [Related]
12. Benzoic acid biosynthesis in cell cultures of Hypericum androsaemum. Abd El-Mawla AM; Beerhues L Planta; 2002 Mar; 214(5):727-33. PubMed ID: 11882941 [TBL] [Abstract][Full Text] [Related]
13. Enhanced formation of aromatic amino acids increases fragrance without affecting flower longevity or pigmentation in Petunia × hybrida. Oliva M; Ovadia R; Perl A; Bar E; Lewinsohn E; Galili G; Oren-Shamir M Plant Biotechnol J; 2015 Jan; 13(1):125-36. PubMed ID: 25283446 [TBL] [Abstract][Full Text] [Related]
14. The monolignol pathway contributes to the biosynthesis of volatile phenylpropenes in flowers. Muhlemann JK; Woodworth BD; Morgan JA; Dudareva N New Phytol; 2014 Nov; 204(3):661-670. PubMed ID: 24985707 [TBL] [Abstract][Full Text] [Related]
15. Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers. Ben Zvi MM; Negre-Zakharov F; Masci T; Ovadis M; Shklarman E; Ben-Meir H; Tzfira T; Dudareva N; Vainstein A Plant Biotechnol J; 2008 May; 6(4):403-15. PubMed ID: 18346094 [TBL] [Abstract][Full Text] [Related]
16. The cytochrome P450 CYP86A22 is a fatty acyl-CoA omega-hydroxylase essential for Estolide synthesis in the stigma of Petunia hybrida. Han J; Clement JM; Li J; King A; Ng S; Jaworski JG J Biol Chem; 2010 Feb; 285(6):3986-3996. PubMed ID: 19940120 [TBL] [Abstract][Full Text] [Related]
17. A kinetic model describes metabolic response to perturbations and distribution of flux control in the benzenoid network of Petunia hybrida. Colón AM; Sengupta N; Rhodes D; Dudareva N; Morgan J Plant J; 2010 Apr; 62(1):64-76. PubMed ID: 20070567 [TBL] [Abstract][Full Text] [Related]
18. EOBII, a gene encoding a flower-specific regulator of phenylpropanoid volatiles' biosynthesis in petunia. Spitzer-Rimon B; Marhevka E; Barkai O; Marton I; Edelbaum O; Masci T; Prathapani NK; Shklarman E; Ovadis M; Vainstein A Plant Cell; 2010 Jun; 22(6):1961-76. PubMed ID: 20543029 [TBL] [Abstract][Full Text] [Related]
19. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Anterola AM; Lewis NG Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514 [TBL] [Abstract][Full Text] [Related]
20. Altered profile of floral volatiles and lignin content by down-regulation of Caffeoyl Shikimate Esterase in Petunia. Kim JY; Cho KH; Keene SA; Colquhoun TA BMC Plant Biol; 2023 Apr; 23(1):210. PubMed ID: 37085749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]