BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 2298811)

  • 1. Parthenogenesis in Xenopus eggs requires centrosomal integrity.
    Klotz C; Dabauvalle MC; Paintrand M; Weber T; Bornens M; Karsenti E
    J Cell Biol; 1990 Feb; 110(2):405-15. PubMed ID: 2298811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drosophila centrosomes are unable to trigger parthenogenetic development of Xenopus eggs.
    Tournier F; Bobinnec Y; Debec A; Santamaria P; Bornens M
    Biol Cell; 1999 Mar; 91(2):99-108. PubMed ID: 10399825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parthenogenesis in Xenopus eggs injected with centrosomes from synchronized human lymphoid cells.
    Tournier F; Karsenti E; Bornens M
    Dev Biol; 1989 Dec; 136(2):321-9. PubMed ID: 2583369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs.
    Karsenti E; Newport J; Hubble R; Kirschner M
    J Cell Biol; 1984 May; 98(5):1730-45. PubMed ID: 6725396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drosophila parthenogenesis: a model for de novo centrosome assembly.
    Riparbelli MG; Callaini G
    Dev Biol; 2003 Aug; 260(2):298-313. PubMed ID: 12921733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrosomes competent for parthenogenesis in Xenopus eggs support procentriole budding in cell-free extracts.
    Tournier F; Cyrklaff M; Karsenti E; Bornens M
    Proc Natl Acad Sci U S A; 1991 Nov; 88(22):9929-33. PubMed ID: 1946461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of maternal centrosomes in unfertilized sea urchin eggs.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1992; 23(1):61-70. PubMed ID: 1356637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional effects of hydrostatic pressure on centrosomes from vertebrate cells.
    Rousselet A; Euteneuer U; Bordes N; Ruiz T; Hui Bon Hua G; Bornens M
    Cell Motil Cytoskeleton; 2001 Apr; 48(4):262-76. PubMed ID: 11276075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the microtubule nucleating activity of centrosomes in Xenopus egg extracts: role of cyclin A-associated protein kinase.
    Buendia B; Draetta G; Karsenti E
    J Cell Biol; 1992 Mar; 116(6):1431-42. PubMed ID: 1531830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centrosome inheritance in the parthenogenetic egg of the collembolan Folsomia candida.
    Riparbelli MG; Giordano R; Callaini G
    Cell Tissue Res; 2006 Dec; 326(3):861-72. PubMed ID: 16906420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The intercentriolar linkage is critical for the ability of heterologous centrosomes to induce parthenogenesis in Xenopus.
    Tournier F; Komesli S; Paintrand M; Job D; Bornens M
    J Cell Biol; 1991 Jun; 113(6):1361-9. PubMed ID: 2045416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centrosome assembly in vitro: role of gamma-tubulin recruitment in Xenopus sperm aster formation.
    FĂ©lix MA; Antony C; Wright M; Maro B
    J Cell Biol; 1994 Jan; 124(1-2):19-31. PubMed ID: 8294501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtubule nucleating activity of centrosomes in cell-free extracts from Xenopus eggs: involvement of phosphorylation and accumulation of pericentriolar material.
    Ohta K; Shiina N; Okumura E; Hisanaga S; Kishimoto T; Endo S; Gotoh Y; Nishida E; Sakai H
    J Cell Sci; 1993 Jan; 104 ( Pt 1)():125-37. PubMed ID: 8383693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From fertilization to cancer: the role of centrosomes in the union and separation of genomic material.
    Schatten H; Hueser CN; Chakrabarti A
    Microsc Res Tech; 2000 Jun; 49(5):420-7. PubMed ID: 10842368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle.
    Gard DL; Hafezi S; Zhang T; Doxsey SJ
    J Cell Biol; 1990 Jun; 110(6):2033-42. PubMed ID: 2190990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule organization during the early development of the parthenogenetic egg of the hymenopteran Muscidifurax uniraptor.
    Riparbelli MG; Stouthamer R; Dallai R; Callaini G
    Dev Biol; 1998 Mar; 195(2):89-99. PubMed ID: 9520327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reciprocal inheritance of centrosomes in the parthenogenetic hymenopteran Nasonia vitripennis.
    Tram U; Sullivan W
    Curr Biol; 2000 Nov; 10(22):1413-9. PubMed ID: 11102802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drosophila parthenogenesis: a tool to decipher centrosomal vs acentrosomal spindle assembly pathways.
    Riparbelli MG; Callaini G
    Exp Cell Res; 2008 Apr; 314(7):1617-25. PubMed ID: 18313666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1988; 11(4):248-59. PubMed ID: 3064924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubule and centrosome distribution during sheep fertilization.
    Le Guen P; Crozet N
    Eur J Cell Biol; 1989 Apr; 48(2):239-49. PubMed ID: 2568260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.