These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 22988246)
1. Starch source influences dietary glucose generation at the mucosal α-glucosidase level. Lin AH; Lee BH; Nichols BL; Quezada-Calvillo R; Rose DR; Naim HY; Hamaker BR J Biol Chem; 2012 Oct; 287(44):36917-21. PubMed ID: 22988246 [TBL] [Abstract][Full Text] [Related]
2. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis. Dhital S; Lin AH; Hamaker BR; Gidley MJ; Muniandy A PLoS One; 2013; 8(4):e62546. PubMed ID: 23638112 [TBL] [Abstract][Full Text] [Related]
3. Modulation of starch digestion for slow glucose release through "toggling" of activities of mucosal α-glucosidases. Lee BH; Eskandari R; Jones K; Reddy KR; Quezada-Calvillo R; Nichols BL; Rose DR; Hamaker BR; Pinto BM J Biol Chem; 2012 Sep; 287(38):31929-38. PubMed ID: 22851177 [TBL] [Abstract][Full Text] [Related]
4. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal α-glucosidase level and are slowly digestible in vivo. Lee BH; Yan L; Phillips RJ; Reuhs BL; Jones K; Rose DR; Nichols BL; Quezada-Calvillo R; Yoo SH; Hamaker BR PLoS One; 2013; 8(4):e59745. PubMed ID: 23565164 [TBL] [Abstract][Full Text] [Related]
5. Number of branch points in α-limit dextrins impact glucose generation rates by mammalian mucosal α-glucosidases. Lee BH; Hamaker BR Carbohydr Polym; 2017 Feb; 157():207-213. PubMed ID: 27987919 [TBL] [Abstract][Full Text] [Related]
6. Branch pattern of starch internal structure influences the glucogenesis by mucosal Nt-maltase-glucoamylase. Lin AH; Ao Z; Quezada-Calvillo R; Nichols BL; Lin CT; Hamaker BR Carbohydr Polym; 2014 Oct; 111():33-40. PubMed ID: 25037326 [TBL] [Abstract][Full Text] [Related]
7. Mucosal C-terminal maltase-glucoamylase hydrolyzes large size starch digestion products that may contribute to rapid postprandial glucose generation. Lee BH; Lin AH; Nichols BL; Jones K; Rose DR; Quezada-Calvillo R; Hamaker BR Mol Nutr Food Res; 2014 May; 58(5):1111-21. PubMed ID: 24442968 [TBL] [Abstract][Full Text] [Related]
8. Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch alpha-glucogenesis. Quezada-Calvillo R; Robayo-Torres CC; Opekun AR; Sen P; Ao Z; Hamaker BR; Quaroni A; Brayer GD; Wattler S; Nehls MC; Sterchi EE; Nichols BL J Nutr; 2007 Jul; 137(7):1725-33. PubMed ID: 17585022 [TBL] [Abstract][Full Text] [Related]
10. Contribution of the Individual Small Intestinal α-Glucosidases to Digestion of Unusual α-Linked Glycemic Disaccharides. Lee BH; Rose DR; Lin AH; Quezada-Calvillo R; Nichols BL; Hamaker BR J Agric Food Chem; 2016 Aug; 64(33):6487-94. PubMed ID: 27480812 [TBL] [Abstract][Full Text] [Related]
11. Unexpected high digestion rate of cooked starch by the Ct-maltase-glucoamylase small intestine mucosal α-glucosidase subunit. Lin AH; Nichols BL; Quezada-Calvillo R; Avery SE; Sim L; Rose DR; Naim HY; Hamaker BR PLoS One; 2012; 7(5):e35473. PubMed ID: 22563462 [TBL] [Abstract][Full Text] [Related]
12. Luminal substrate "brake" on mucosal maltase-glucoamylase activity regulates total rate of starch digestion to glucose. Quezada-Calvillo R; Robayo-Torres CC; Ao Z; Hamaker BR; Quaroni A; Brayer GD; Sterchi EE; Baker SS; Nichols BL J Pediatr Gastroenterol Nutr; 2007 Jul; 45(1):32-43. PubMed ID: 17592362 [TBL] [Abstract][Full Text] [Related]
13. Slowly digestible property of highly branched α-limit dextrins produced by 4,6-α-glucanotransferase from Streptococcus thermophilus evaluated in vitro and in vivo. Ryu JJ; Li X; Lee ES; Li D; Lee BH Carbohydr Polym; 2022 Jan; 275():118685. PubMed ID: 34742415 [TBL] [Abstract][Full Text] [Related]
14. Mucosal maltase-glucoamylase plays a crucial role in starch digestion and prandial glucose homeostasis of mice. Nichols BL; Quezada-Calvillo R; Robayo-Torres CC; Ao Z; Hamaker BR; Butte NF; Marini J; Jahoor F; Sterchi EE J Nutr; 2009 Apr; 139(4):684-90. PubMed ID: 19193815 [TBL] [Abstract][Full Text] [Related]
15. Different inhibition properties of catechins on the individual subunits of mucosal α-glucosidases as measured by partially-purified rat intestinal extract. Lim J; Kim DK; Shin H; Hamaker BR; Lee BH Food Funct; 2019 Jul; 10(7):4407-4413. PubMed ID: 31282911 [TBL] [Abstract][Full Text] [Related]
16. Maltase-glucoamylase modulates gluconeogenesis and sucrase-isomaltase dominates starch digestion glucogenesis. Diaz-Sotomayor M; Quezada-Calvillo R; Avery SE; Chacko SK; Yan LK; Lin AH; Ao ZH; Hamaker BR; Nichols BL J Pediatr Gastroenterol Nutr; 2013 Dec; 57(6):704-12. PubMed ID: 23838818 [TBL] [Abstract][Full Text] [Related]
17. Modeling of cooked starch digestion process using recombinant human pancreatic α-amylase and maltase-glucoamylase for in vitro evaluation of α-glucosidase inhibitors. Cao X; Zhang C; Dong Y; Geng P; Bai F; Bai G Carbohydr Res; 2015 Sep; 414():15-21. PubMed ID: 26162745 [TBL] [Abstract][Full Text] [Related]
18. Naturally occurring sulfonium-ion glucosidase inhibitors and their derivatives: a promising class of potential antidiabetic agents. Mohan S; Eskandari R; Pinto BM Acc Chem Res; 2014 Jan; 47(1):211-25. PubMed ID: 23964564 [TBL] [Abstract][Full Text] [Related]