These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

882 related articles for article (PubMed ID: 22988256)

  • 1. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis.
    Dillies MA; Rau A; Aubert J; Hennequet-Antier C; Jeanmougin M; Servant N; Keime C; Marot G; Castel D; Estelle J; Guernec G; Jagla B; Jouneau L; Laloë D; Le Gall C; Schaëffer B; Le Crom S; Guedj M; Jaffrézic F;
    Brief Bioinform; 2013 Nov; 14(6):671-83. PubMed ID: 22988256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Impact of Normalization Methods on RNA-Seq Data Analysis.
    Zyprych-Walczak J; Szabelska A; Handschuh L; Górczak K; Klamecka K; Figlerowicz M; Siatkowski I
    Biomed Res Int; 2015; 2015():621690. PubMed ID: 26176014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Single Cell RNA-Seq Normalization Methods.
    Ding B; Zheng L; Wang W
    G3 (Bethesda); 2017 Jul; 7(7):2039-2045. PubMed ID: 28468817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data.
    Li X; Brock GN; Rouchka EC; Cooper NGF; Wu D; O'Toole TE; Gill RS; Eteleeb AM; O'Brien L; Rai SN
    PLoS One; 2017; 12(5):e0176185. PubMed ID: 28459823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normalization of Single-Cell RNA-Seq Data.
    Risso D
    Methods Mol Biol; 2021; 2284():303-329. PubMed ID: 33835450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data.
    Li P; Piao Y; Shon HS; Ryu KH
    BMC Bioinformatics; 2015 Oct; 16():347. PubMed ID: 26511205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SCnorm: robust normalization of single-cell RNA-seq data.
    Bacher R; Chu LF; Leng N; Gasch AP; Thomson JA; Stewart RM; Newton M; Kendziorski C
    Nat Methods; 2017 Jun; 14(6):584-586. PubMed ID: 28418000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies.
    Li X; Cooper NGF; O'Toole TE; Rouchka EC
    BMC Genomics; 2020 Jan; 21(1):75. PubMed ID: 31992223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive processing of high-throughput small RNA sequencing data including quality checking, normalization, and differential expression analysis using the UEA sRNA Workbench.
    Beckers M; Mohorianu I; Stocks M; Applegate C; Dalmay T; Moulton V
    RNA; 2017 Jun; 23(6):823-835. PubMed ID: 28289155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of study design for detecting differentially abundant features in high-throughput experiments.
    Luo H; Li J; Chia BK; Robson P; Nagarajan N
    Genome Biol; 2014 Dec; 15(12):527. PubMed ID: 25517037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normalizing single-cell RNA sequencing data: challenges and opportunities.
    Vallejos CA; Risso D; Scialdone A; Dudoit S; Marioni JC
    Nat Methods; 2017 Jun; 14(6):565-571. PubMed ID: 28504683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions.
    Evans C; Hardin J; Stoebel DM
    Brief Bioinform; 2018 Sep; 19(5):776-792. PubMed ID: 28334202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normalization for Single-Cell RNA-Seq Data Analysis.
    Bacher R
    Methods Mol Biol; 2019; 1935():11-23. PubMed ID: 30758817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covariate-dependent negative binomial factor analysis of RNA sequencing data.
    Zamani Dadaneh S; Zhou M; Qian X
    Bioinformatics; 2018 Jul; 34(13):i61-i69. PubMed ID: 29949981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Zipf-plot based normalization method for high-throughput RNA-seq data.
    Wang B
    PLoS One; 2020; 15(4):e0230594. PubMed ID: 32271772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic data sets for the identification of key ingredients for RNA-seq differential analysis.
    Rigaill G; Balzergue S; Brunaud V; Blondet E; Rau A; Rogier O; Caius J; Maugis-Rabusseau C; Soubigou-Taconnat L; Aubourg S; Lurin C; Martin-Magniette ML; Delannoy E
    Brief Bioinform; 2018 Jan; 19(1):65-76. PubMed ID: 27742662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples.
    Wagner GP; Kin K; Lynch VJ
    Theory Biosci; 2012 Dec; 131(4):281-5. PubMed ID: 22872506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models.
    Rau A; Maugis-Rabusseau C; Martin-Magniette ML; Celeux G
    Bioinformatics; 2015 May; 31(9):1420-7. PubMed ID: 25563332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bias, robustness and scalability in single-cell differential expression analysis.
    Soneson C; Robinson MD
    Nat Methods; 2018 Apr; 15(4):255-261. PubMed ID: 29481549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variance component score test for time-course gene set analysis of longitudinal RNA-seq data.
    Agniel D; Hejblum BP
    Biostatistics; 2017 Oct; 18(4):589-604. PubMed ID: 28334305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.