BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22988608)

  • 1. COD fractionation and denitrification potential of sonicated waste activated sludge liquids.
    Koroglu S; Zengin GE; Yagci N; Artan N
    Environ Technol; 2012; 33(13-15):1505-10. PubMed ID: 22988608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The investigation and assessment of characteristics of waste activated sludge after ultrasound pretreatment.
    Yagci N; Akpinar I
    Environ Technol; 2011 Jan; 32(1-2):221-30. PubMed ID: 21473284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry.
    González C; García PA; Muñoz R
    Water Sci Technol; 2009; 60(8):2145-52. PubMed ID: 19844061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced nitrogen removal in an anoxic-oxic-anoxic process treating low COD/N tropical wastewater: Low-dissolved oxygen nitrification and utilization of slowly-biodegradable COD for denitrification.
    How SW; Chua ASM; Ngoh GC; Nittami T; Curtis TP
    Sci Total Environ; 2019 Nov; 693():133526. PubMed ID: 31376760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ultrasonic and microwave disintegration on physico-chemical and biodegradation characteristics of waste-activated sludge.
    Doğruel S; Özgen AS
    Environ Technol; 2017 Apr; 38(7):844-859. PubMed ID: 27467776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradability and denitrification potential of settleable chemical oxygen demand in domestic wastewater.
    Tas DO; Karahan O; Insel G; Ovez S; Orhon D; Spanjers H
    Water Environ Res; 2009 Jul; 81(7):715-27. PubMed ID: 19691253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction by sonication of excess sludge production in a conventional activated sludge system: continuous flow and lab-scale reactor.
    Vaxelaire S; Gonze E; Merlin G; Gonthier Y
    Environ Technol; 2008 Dec; 29(12):1307-20. PubMed ID: 19149352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. COD fractionation of tannery wastewaters--particle size distribution, biodegradability and modeling.
    Karahan O; Dogruel S; Dulekgurgen E; Orhon D
    Water Res; 2008 Feb; 42(4-5):1083-92. PubMed ID: 17991509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic reduction of excess sludge from activated sludge system II: urban sewage treatment.
    Zhang G; He J; Zhang P; Zhang J
    J Hazard Mater; 2009 May; 164(2-3):1105-9. PubMed ID: 18926629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size distribution of wastewater COD fractions as an index for biodegradability.
    Dulekgurgen E; Doğruel S; Karahan O; Orhon D
    Water Res; 2006 Jan; 40(2):273-82. PubMed ID: 16376405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation characteristics and size fractionation of landfill leachate for integrated membrane treatment.
    Insel G; Dagdar M; Dogruel S; Dizge N; Ubay Cokgor E; Keskinler B
    J Hazard Mater; 2013 Sep; 260():825-32. PubMed ID: 23856313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized aeration strategies for nitrogen and phosphorus removal with aerobic granular sludge.
    Lochmatter S; Gonzalez-Gil G; Holliger C
    Water Res; 2013 Oct; 47(16):6187-97. PubMed ID: 23948562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Activated sludge model based COD fractionation in wastewater characterization].
    Zhou Z; Wu ZC; Wang ZW; Tang SJ; Gu GW
    Huan Jing Ke Xue; 2010 Jun; 31(6):1478-82. PubMed ID: 20698259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient removal using anaerobically fermented leachate of food waste in the BNR process.
    Lee CY; Shin HS; Chae SR; Nam SY; Paik BC
    Water Sci Technol; 2003; 47(1):159-65. PubMed ID: 12578189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrous oxide emission and nutrient removal in aerobic granular sludge sequencing batch reactors.
    Quan X; Zhang M; Lawlor PG; Yang Z; Zhan X
    Water Res; 2012 Oct; 46(16):4981-90. PubMed ID: 22835837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of chemical oxygen demand/total Kjeldahl nitrogen ratio and sludge age on nitrification of nitrogenous wastewater.
    Sharma R; Gupta SK
    Water Environ Res; 2004; 76(2):155-61. PubMed ID: 15168847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Savings with upgraded performance through improved activated sludge denitrification in the combined activated sludge-biofilter system of the Southpest Wastewater Treatment Plant.
    Jobbágy A; Tardy GM; Palkó G; Benáková A; Krhutková O; Wanner J
    Water Sci Technol; 2008; 57(8):1287-93. PubMed ID: 18469403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of primary sludge fermentation products on mass balance for biological treatment.
    Ubay-Cokgor E; Oktay S; Zengin GE; Artan N; Orhon D
    Water Sci Technol; 2005; 51(11):105-14. PubMed ID: 16114623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen control in AO process with recirculation of solubilized excess sludge.
    Cui R; Jahng D
    Water Res; 2004 Mar; 38(5):1159-72. PubMed ID: 14975649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.