These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 22988632)

  • 1. Highly efficient removal of Cu(II), Zn(II), Ni(II) and Fe(II) from electroplating wastewater using sulphide from sulphidogenic bioreactor effluent.
    Fang D; Zhang R; Deng W; Li J
    Environ Technol; 2012; 33(13-15):1709-15. PubMed ID: 22988632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovative developments in the selective removal and reuse of heavy metals from wastewaters.
    Veeken AH; Rulkens WH
    Water Sci Technol; 2003; 47(10):9-16. PubMed ID: 12862211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation.
    Heidmann I; Calmano W
    J Hazard Mater; 2008 Apr; 152(3):934-41. PubMed ID: 17854991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal sulphides from wastewater: assessing the impact of supersaturation control strategies.
    Mokone TP; van Hille RP; Lewis AE
    Water Res; 2012 May; 46(7):2088-100. PubMed ID: 22336629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system.
    Katsou E; Malamis S; Haralambous KJ
    Chemosphere; 2011 Jan; 82(4):557-64. PubMed ID: 21167554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory.
    Sousa FW; Sousa MJ; Oliveira IR; Oliveira AG; Cavalcante RM; Fechine PB; Neto VO; de Keukeleire D; Nascimento RF
    J Environ Manage; 2009 Aug; 90(11):3340-4. PubMed ID: 19535200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide.
    Sahinkaya E; Gungor M; Bayrakdar A; Yucesoy Z; Uyanik S
    J Hazard Mater; 2009 Nov; 171(1-3):901-6. PubMed ID: 19608339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fenton-biological treatment of reverse osmosis membrane concentrate from a metal plating wastewater recycle system.
    Huang RM; He JY; Zhao J; Luo Q; Huang CM
    Environ Technol; 2011 Apr; 32(5-6):515-22. PubMed ID: 21877532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique A case study.
    Merzouk B; Gourich B; Sekki A; Madani K; Chibane M
    J Hazard Mater; 2009 May; 164(1):215-22. PubMed ID: 18799259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH.
    Park SM; Yoo JC; Ji SW; Yang JS; Baek K
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):3013-22. PubMed ID: 25231736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on reaction kinetics and selective precipitation of Cu, Zn, Ni and Sn with H₂S in single-metal and multi-metal systems.
    Tokuda H; Kuchar D; Mihara N; Kubota M; Matsuda H; Fukuta T
    Chemosphere; 2008 Nov; 73(9):1448-52. PubMed ID: 18809200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.
    Jong T; Parry DL
    J Environ Monit; 2004 Apr; 6(4):278-85. PubMed ID: 15054535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced bioremediation of heavy metal from effluent by sulfate-reducing bacteria with copper-iron bimetallic particles support.
    Zhou Q; Chen Y; Yang M; Li W; Deng L
    Bioresour Technol; 2013 May; 136():413-7. PubMed ID: 23567710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal removal from industrial wastewater by clinoptilolite.
    Kocasoy G; Sahin V
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Dec; 42(14):2139-46. PubMed ID: 18074286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.
    Gibert O; de Pablo J; Cortina JL; Ayora C
    Water Res; 2005 Aug; 39(13):2827-38. PubMed ID: 15992854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quick and efficient co-treatment of Zn(2+)/Ni(2+) and CN(-) via the formation of Ni(CN)4(2-) intercalated larger ZnAl-LDH crystals.
    Zhou JZ; Liang Y; Zhang J; Li L; Xu Y; Ruan X; Qian G; Xu ZP
    J Hazard Mater; 2014 Aug; 279():141-7. PubMed ID: 25058935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractionation and leachability of Fe, Zn, Cu and Ni in the sludge from a sulphate-reducing bioreactor treating metal-bearing wastewater.
    Kousi P; Remoundaki E; Hatzikioseyian A; Korkovelou V; Tsezos M
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35883-35894. PubMed ID: 29633190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of some heavy metals by CKD leachate.
    Zaki NG; Khattab IA; Abd El-Monem NM
    J Hazard Mater; 2007 Aug; 147(1-2):21-7. PubMed ID: 17275181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective self-purification of polynary metal electroplating wastewaters through formation of layered double hydroxides.
    Zhou JZ; Wu YY; Liu C; Orpe A; Liu Q; Xu ZP; Qian GR; Qiao SZ
    Environ Sci Technol; 2010 Dec; 44(23):8884-90. PubMed ID: 21062046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.