These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 22988756)
21. Residual activity of Bacillus thuringiensis serovars medellin and jegathesan on Culex pipiens and Aedes aegypti larvae. Thiéry I; Fouque F; Gaven B; Lagneau C J Am Mosq Control Assoc; 1999 Sep; 15(3):371-9. PubMed ID: 10480130 [TBL] [Abstract][Full Text] [Related]
22. How non-target chironomid communities respond to mosquito control: Integrating DNA metabarcoding and joint species distribution modelling. Röder N; Stoll VS; Jupke JF; Kolbenschlag S; Bundschuh M; Theißinger K; Schwenk K Sci Total Environ; 2024 Feb; 913():169735. PubMed ID: 38163597 [TBL] [Abstract][Full Text] [Related]
23. [Characteristics of Bacillus thuringiensis var. israelensis and its effect on mosquito larvae (Diptera: Culicidae)]. Müller P Angew Parasitol; 1984 Aug; 25(3):157-63. PubMed ID: 6149708 [No Abstract] [Full Text] [Related]
24. Chromosome-Directed PCR-Based Detection and Quantification of Bacillus cereus Group Members with Focus on B. thuringiensis Serovar israelensis Active against Nematoceran Larvae. Schneider S; Hendriksen NB; Melin P; Lundström JO; Sundh I Appl Environ Microbiol; 2015 Aug; 81(15):4894-903. PubMed ID: 25979887 [TBL] [Abstract][Full Text] [Related]
25. Mosquito control based on Bacillus thuringiensis israelensis (Bti) interrupts artificial wetland food chains. Allgeier S; Friedrich A; Brühl CA Sci Total Environ; 2019 Oct; 686():1173-1184. PubMed ID: 31412513 [TBL] [Abstract][Full Text] [Related]
26. [The relationship of the larval behavioral traits of the malarial mosquito Anopheles messeae (Diptera: Culicidae) to its sensitivity to the entomopathogenic bacterium Bacillus thuringiensis subspecies israelensis]. Burlak VA Parazitologiia; 1998; 32(1):11-20. PubMed ID: 9612818 [TBL] [Abstract][Full Text] [Related]
27. Effect of Bacillus sphaericus and Bacillus thuringiensis on acid-phosphatase activity of mosquito larvae, Culex pipiens and Aedes caspius. Hussein MA; Hafez JA J Egypt Soc Parasitol; 1989 Jun; 19(1):195-203. PubMed ID: 2565356 [TBL] [Abstract][Full Text] [Related]
28. Investigations on bacteria as a potential biological control agent of summer chafer, Amphimallon solstitiale L. (Coleoptera: Scarabaeidae). Sezen K; Demir I; Kati H; Demirbag Z J Microbiol; 2005 Oct; 43(5):463-8. PubMed ID: 16273040 [TBL] [Abstract][Full Text] [Related]
29. Susceptibility of field-collected Aedes aegypti (L.) (Diptera: Culicidae) to Bacillus thuringiensis israelensis and temephos. Loke SR; Andy-Tan WA; Benjamin S; Lee HL; Sofian-Azirun M Trop Biomed; 2010 Dec; 27(3):493-503. PubMed ID: 21399591 [TBL] [Abstract][Full Text] [Related]
30. Synergism between wild-type Bacillus thuringiensis subsp. israelensis and B. sphaericus strains: a study based on isobolographic analysis and histopathology. Sreshty MA; Kumar KP; Murty US Acta Trop; 2011 Apr; 118(1):14-20. PubMed ID: 21211506 [TBL] [Abstract][Full Text] [Related]
31. Insecticide resistance in Culex pipiens from New York. Paul A; Harrington LC; Zhang L; Scott JG J Am Mosq Control Assoc; 2005 Sep; 21(3):305-9. PubMed ID: 16252522 [TBL] [Abstract][Full Text] [Related]
32. Response of larval Chironomus tepperi (Diptera: Chironomidae) to individual Bacillus thuringiensis var. israelensis toxins and toxin mixtures. Hughes PA; Stevens MM; Park HW; Federici BA; Dennis ES; Akhurst R J Invertebr Pathol; 2005 Jan; 88(1):34-9. PubMed ID: 15707867 [TBL] [Abstract][Full Text] [Related]
33. Production & formulation of Bacillus thuringiensis var. israelensis & B. sphaericus 1593. Desai SY; Shethna YI Indian J Med Res; 1991 Sep; 93():318-23. PubMed ID: 1778620 [TBL] [Abstract][Full Text] [Related]
34. Field trials with tank mixtures of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus formulations against Culex pipiens larvae in septic tanks in Antalya, Turkey. Cetin H; Dechant P; Yanikoglu A J Am Mosq Control Assoc; 2007 Jun; 23(2):161-5. PubMed ID: 17847848 [TBL] [Abstract][Full Text] [Related]
35. Efficacy of Czechoslovak and Soviet Bacillus thuringiensis (serotype H-14) formulations against mosquito larvae. Rettich F J Hyg Epidemiol Microbiol Immunol; 1987; 31(1):53-63. PubMed ID: 2883232 [TBL] [Abstract][Full Text] [Related]
36. Production of concentrates of bacterial bio-insecticide Bacillus thuringiensis var. israelensis by flocculation/sedimentation. Luna-Finkler CL; Finkler L Acta Trop; 2008 Aug; 107(2):134-8. PubMed ID: 18582843 [TBL] [Abstract][Full Text] [Related]
37. Low persistence of Bacillus thuringiensis serovar israelensis spores in four mosquito biotopes of a salt marsh in southern France. Hajaij M; Carron A; Deleuze J; Gaven B; Setier-Rio ML; Vigo G; Thiéry I; Nielsen-LeRoux C; Lagneau C Microb Ecol; 2005 Nov; 50(4):475-87. PubMed ID: 16328650 [TBL] [Abstract][Full Text] [Related]
38. Toxicity and affecting factors of Bacillus thuringiensis var. israelensis on Chironomus kiiensis larvae. Cao CW; Sun LL; Wen RR; Li XP; Wu HQ; Wang ZY J Insect Sci; 2012; 12():1-8. PubMed ID: 23465075 [TBL] [Abstract][Full Text] [Related]
39. Effects of Bacillus thuringiensis israelensis and spinosad on adult emergence of the non-biting midges Polypedilum nubifer (Skuse) and Tanytarsus curticornis Kieffer (Diptera: Chironomidae) in coastal wetlands. Duchet C; Franquet E; Lagadic L; Lagneau C Ecotoxicol Environ Saf; 2015 May; 115():272-8. PubMed ID: 25728359 [TBL] [Abstract][Full Text] [Related]
40. Effects of repeated field applications of two formulations of Bacillus thuringiensis var. israelensis on non-target saltmarsh invertebrates in Atlantic coastal wetlands. Caquet T; Roucaute M; Le Goff P; Lagadic L Ecotoxicol Environ Saf; 2011 Jul; 74(5):1122-30. PubMed ID: 21592573 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]