These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 22988872)
1. Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions? Civiero L; Bubacco L Biochem Soc Trans; 2012 Oct; 40(5):1095-101. PubMed ID: 22988872 [TBL] [Abstract][Full Text] [Related]
2. The Parkinson disease gene LRRK2: evolutionary and structural insights. Marín I Mol Biol Evol; 2006 Dec; 23(12):2423-33. PubMed ID: 16966681 [TBL] [Abstract][Full Text] [Related]
3. Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment. Klein CL; Rovelli G; Springer W; Schall C; Gasser T; Kahle PJ J Neurochem; 2009 Nov; 111(3):703-15. PubMed ID: 19712061 [TBL] [Abstract][Full Text] [Related]
4. Conformational heterogeneity of the Roc domains in C. tepidum Roc-COR and implications for human LRRK2 Parkinson mutations. Rudi K; Ho FY; Gilsbach BK; Pots H; Wittinghofer A; Kortholt A; Klare JP Biosci Rep; 2015 Aug; 35(5):. PubMed ID: 26310572 [TBL] [Abstract][Full Text] [Related]
5. The Roc-COR tandem domain of leucine-rich repeat kinase 2 forms dimers and exhibits conventional Ras-like GTPase properties. Mills RD; Liang LY; Lio DS; Mok YF; Mulhern TD; Cao G; Griffin M; Kenche VB; Culvenor JG; Cheng HC J Neurochem; 2018 Nov; 147(3):409-428. PubMed ID: 30091236 [TBL] [Abstract][Full Text] [Related]
6. Revisiting the Roco G-protein cycle. Terheyden S; Ho FY; Gilsbach BK; Wittinghofer A; Kortholt A Biochem J; 2015 Jan; 465(1):139-47. PubMed ID: 25317655 [TBL] [Abstract][Full Text] [Related]
7. The GTPase function of LRRK2. Taymans JM Biochem Soc Trans; 2012 Oct; 40(5):1063-9. PubMed ID: 22988866 [TBL] [Abstract][Full Text] [Related]
8. Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers. Civiero L; Vancraenenbroeck R; Belluzzi E; Beilina A; Lobbestael E; Reyniers L; Gao F; Micetic I; De Maeyer M; Bubacco L; Baekelandt V; Cookson MR; Greggio E; Taymans JM PLoS One; 2012; 7(8):e43472. PubMed ID: 22952686 [TBL] [Abstract][Full Text] [Related]
9. Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2. Vancraenenbroeck R; Lobbestael E; Weeks SD; Strelkov SV; Baekelandt V; Taymans JM; De Maeyer M Biochim Biophys Acta; 2012 Mar; 1824(3):450-60. PubMed ID: 22251894 [TBL] [Abstract][Full Text] [Related]
10. Leucine-rich repeat kinase 2: relevance to Parkinson's disease. Guo L; Wang W; Chen SG Int J Biochem Cell Biol; 2006; 38(9):1469-75. PubMed ID: 16600664 [TBL] [Abstract][Full Text] [Related]
11. The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Guo L; Gandhi PN; Wang W; Petersen RB; Wilson-Delfosse AL; Chen SG Exp Cell Res; 2007 Oct; 313(16):3658-70. PubMed ID: 17706965 [TBL] [Abstract][Full Text] [Related]
12. Understanding the GTPase Activity of LRRK2: Regulation, Function, and Neurotoxicity. Nguyen AP; Moore DJ Adv Neurobiol; 2017; 14():71-88. PubMed ID: 28353279 [TBL] [Abstract][Full Text] [Related]
13. Developmental regulation of leucine-rich repeat kinase 1 and 2 expression in the brain and other rodent and human organs: Implications for Parkinson's disease. Westerlund M; Belin AC; Anvret A; Bickford P; Olson L; Galter D Neuroscience; 2008 Mar; 152(2):429-36. PubMed ID: 18272292 [TBL] [Abstract][Full Text] [Related]
14. ROCO kinase activity is controlled by internal GTPase function. Weiss B Sci Signal; 2008 Jun; 1(23):pe27. PubMed ID: 18544747 [TBL] [Abstract][Full Text] [Related]
15. Contribution of GTPase activity to LRRK2-associated Parkinson disease. Tsika E; Moore DJ Small GTPases; 2013; 4(3):164-70. PubMed ID: 24025585 [TBL] [Abstract][Full Text] [Related]
16. Cryo-EM analysis of homodimeric full-length LRRK2 and LRRK1 protein complexes. Sejwal K; Chami M; Rémigy H; Vancraenenbroeck R; Sibran W; Sütterlin R; Baumgartner P; McLeod R; Chartier-Harlin MC; Baekelandt V; Stahlberg H; Taymans JM Sci Rep; 2017 Aug; 7(1):8667. PubMed ID: 28819229 [TBL] [Abstract][Full Text] [Related]
17. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants. Li X; Tan YC; Poulose S; Olanow CW; Huang XY; Yue Z J Neurochem; 2007 Oct; 103(1):238-47. PubMed ID: 17623048 [TBL] [Abstract][Full Text] [Related]
18. Prediction of the repeat domain structures and impact of parkinsonism-associated variations on structure and function of all functional domains of leucine-rich repeat kinase 2 (LRRK2). Mills RD; Mulhern TD; Liu F; Culvenor JG; Cheng HC Hum Mutat; 2014 Apr; 35(4):395-412. PubMed ID: 24470158 [TBL] [Abstract][Full Text] [Related]
19. The unconventional G-protein cycle of LRRK2 and Roco proteins. Terheyden S; Nederveen-Schippers LM; Kortholt A Biochem Soc Trans; 2016 Dec; 44(6):1611-1616. PubMed ID: 27913669 [TBL] [Abstract][Full Text] [Related]
20. LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Korr D; Toschi L; Donner P; Pohlenz HD; Kreft B; Weiss B Cell Signal; 2006 Jun; 18(6):910-20. PubMed ID: 16243488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]