These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22989181)

  • 1. Metal-ion dependent catalytic properties of Sulfolobus solfataricus class ii α-mannosidase.
    Nielsen JW; Poulsen NR; Johnsson A; Winther JR; Stipp SL; Willemoës M
    Biochemistry; 2012 Oct; 51(40):8039-46. PubMed ID: 22989181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational analysis of divalent metal ion binding in the active site of class II α-mannosidase from Sulfolobus solfataricus.
    Hansen DK; Webb H; Nielsen JW; Harris P; Winther JR; Willemoës M
    Biochemistry; 2015 Mar; 54(11):2032-9. PubMed ID: 25751413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The molecular characterization of a novel GH38 α-mannosidase from the crenarchaeon Sulfolobus solfataricus revealed its ability in de-mannosylating glycoproteins.
    Cobucci-Ponzano B; Conte F; Strazzulli A; Capasso C; Fiume I; Pocsfalvi G; Rossi M; Moracci M
    Biochimie; 2010 Dec; 92(12):1895-907. PubMed ID: 20696204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificity, metal binding properties, and spectroscopic characterization of the DapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Haemophilus influenzae.
    Bienvenue DL; Gilner DM; Davis RS; Bennett B; Holz RC
    Biochemistry; 2003 Sep; 42(36):10756-63. PubMed ID: 12962500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidation of primary (alpha(3)N) and vestigial (alpha(5)) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins.
    Busenlehner LS; Weng TC; Penner-Hahn JE; Giedroc DP
    J Mol Biol; 2002 Jun; 319(3):685-701. PubMed ID: 12054863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic structure of the metal center in the Cd(2+), Zn(2+), and Cu(2+) substituted forms of KDO8P synthase: implications for catalysis.
    Kona F; Tao P; Martin P; Xu X; Gatti DL
    Biochemistry; 2009 Apr; 48(16):3610-30. PubMed ID: 19228070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of the reaction catalyzed by isoaspartyl dipeptidase from Escherichia coli.
    Martí-Arbona R; Fresquet V; Thoden JB; Davis ML; Holden HM; Raushel FM
    Biochemistry; 2005 May; 44(19):7115-24. PubMed ID: 15882050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isostructural dinuclear phenoxo-/acetato-bridged manganese(II), cobalt(II), and zinc(II) complexes with labile sites: kinetics of transesterification of 2-hydroxypropyl-p-nitrophenylphosphate.
    Arora H; Barman SK; Lloret F; Mukherjee R
    Inorg Chem; 2012 May; 51(10):5539-53. PubMed ID: 22536852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the catalytically essential residues of the alpha-L-fucosidase from the hyperthermophilic archaeon Sulfolobus solfataricus.
    Cobucci-Ponzano B; Mazzone M; Rossi M; Moracci M
    Biochemistry; 2005 Apr; 44(16):6331-42. PubMed ID: 15835922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased sensitivity to changes in the concentration of metal ions as the basis for the hyperactivity of DtxR(E175K).
    D'Aquino JA; Denninger AR; Moulin AG; D'Aquino KE; Ringe D
    J Mol Biol; 2009 Jul; 390(1):112-23. PubMed ID: 19433095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The variation of catalytic efficiency of Bacillus cereus metallo-beta-lactamase with different active site metal ions.
    Badarau A; Page MI
    Biochemistry; 2006 Sep; 45(35):10654-66. PubMed ID: 16939217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase.
    Hong SB; Raushel FM
    Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and enzymatic investigation of the Sulfolobus solfataricus uridylate kinase shows competitive UTP inhibition and the lack of GTP stimulation.
    Jensen KS; Johansson E; Jensen KF
    Biochemistry; 2007 Mar; 46(10):2745-57. PubMed ID: 17297917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes.
    Grubel K; Rudzka K; Arif AM; Klotz KL; Halfen JA; Berreau LM
    Inorg Chem; 2010 Jan; 49(1):82-96. PubMed ID: 19954165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A lysine-tyrosine pair carries out acid-base chemistry in the metal ion-dependent pyridine dinucleotide-linked beta-hydroxyacid oxidative decarboxylases.
    Aktas DF; Cook PF
    Biochemistry; 2009 Apr; 48(16):3565-77. PubMed ID: 19281248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase.
    Aubert SD; Li Y; Raushel FM
    Biochemistry; 2004 May; 43(19):5707-15. PubMed ID: 15134445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New determinants in the catalytic mechanism of nucleoside hydrolases from the structures of two isozymes from Sulfolobus solfataricus.
    Minici C; Cacciapuoti G; De Leo E; Porcelli M; Degano M
    Biochemistry; 2012 Jun; 51(22):4590-9. PubMed ID: 22551416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divalent metal derivatives of the hamster dihydroorotase domain.
    Huang DT; Thomas MA; Christopherson RI
    Biochemistry; 1999 Aug; 38(31):9964-70. PubMed ID: 10433703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of intermediates along the catalytic cycle of terminal deoxynucleotidyltransferase: dynamical aspects of the two-metal ion mechanism.
    Gouge J; Rosario S; Romain F; Beguin P; Delarue M
    J Mol Biol; 2013 Nov; 425(22):4334-52. PubMed ID: 23856622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression and divalent metal binding properties of the methionyl aminopeptidase from Pyrococcus furiosus.
    Meng L; Ruebush S; D'souza VM; Copik AJ; Tsunasawa S; Holz RC
    Biochemistry; 2002 Jun; 41(23):7199-208. PubMed ID: 12044150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.