BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22989219)

  • 1. Nanoparticle-mediated remote control of enzymatic activity.
    Knecht LD; Ali N; Wei Y; Hilt JZ; Daunert S
    ACS Nano; 2012 Oct; 6(10):9079-86. PubMed ID: 22989219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme activation by alternating magnetic field: Importance of the bioconjugation methodology.
    Armenia I; Grazú Bonavia MV; De Matteis L; Ivanchenko P; Martra G; Gornati R; de la Fuente JM; Bernardini G
    J Colloid Interface Sci; 2019 Mar; 537():615-628. PubMed ID: 30472637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocomposite degradable hydrogels: demonstration of remote controlled degradation and drug release.
    Hawkins AM; Satarkar NS; Hilt JZ
    Pharm Res; 2009 Mar; 26(3):667-73. PubMed ID: 19118411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer.
    Xue W; Liu XL; Ma H; Xie W; Huang S; Wen H; Jing G; Zhao L; Liang XJ; Fan HM
    J Mater Chem B; 2018 Apr; 6(15):2289-2303. PubMed ID: 32254568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation.
    Chen W; Cheng CA; Zink JI
    ACS Nano; 2019 Feb; 13(2):1292-1308. PubMed ID: 30633500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy.
    Meenach SA; Hilt JZ; Anderson KW
    Acta Biomater; 2010 Mar; 6(3):1039-46. PubMed ID: 19840875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doxorubicin Intracellular Remote Release from Biocompatible Oligo(ethylene glycol) Methyl Ether Methacrylate-Based Magnetic Nanogels Triggered by Magnetic Hyperthermia.
    Cazares-Cortes E; Espinosa A; Guigner JM; Michel A; Griffete N; Wilhelm C; Ménager C
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):25775-25788. PubMed ID: 28723064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetic for Biomedical Applications.
    Gao L; Fan K; Yan X
    Theranostics; 2017; 7(13):3207-3227. PubMed ID: 28900505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic Nanocomposites for the Remote Activation of Sulfate Radicals for the Removal of Rhodamine B.
    Paul P; Nicholson M; Hilt JZ
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease.
    Zadnik PL; Molina CA; Sarabia-Estrada R; Groves ML; Wabler M; Mihalic J; McCarthy EF; Gokaslan ZL; Ivkov R; Sciubba D
    J Neurosurg Spine; 2014 Jun; 20(6):740-50. PubMed ID: 24702509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote and real time control of an FVIO-enzyme hybrid nanocatalyst using magnetic stimulation.
    Xiong R; Zhang W; Zhang Y; Zhang Y; Chen Y; He Y; Fan H
    Nanoscale; 2019 Oct; 11(39):18081-18089. PubMed ID: 31343649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remote Activation of Enzyme Nanohybrids for Cancer Prodrug Therapy Controlled by Magnetic Heating.
    Torres-Herrero B; Armenia I; Alleva M; Asín L; Correa S; Ortiz C; Fernández-Afonso Y; Gutiérrez L; de la Fuente JM; Betancor L; Grazú V
    ACS Nano; 2023 Jul; 17(13):12358-12373. PubMed ID: 37358244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formulation and characterization of inhalable magnetic nanocomposite microparticles (MnMs) for targeted pulmonary delivery via spray drying.
    Stocke NA; Meenach SA; Arnold SM; Mansour HM; Hilt JZ
    Int J Pharm; 2015 Feb; 479(2):320-8. PubMed ID: 25542988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.
    Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the Local Nanoscale Heating Mechanism of a Magnetic Core in Mesoporous Silica Drug-Delivery Nanoparticles Using Fluorescence Depolarization.
    Lin FC; Zink JI
    J Am Chem Soc; 2020 Mar; 142(11):5212-5220. PubMed ID: 32091888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-Dependent Heating of Magnetic Iron Oxide Nanoparticles.
    Tong S; Quinto CA; Zhang L; Mohindra P; Bao G
    ACS Nano; 2017 Jul; 11(7):6808-6816. PubMed ID: 28625045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release.
    Satarkar NS; Hilt JZ
    J Control Release; 2008 Sep; 130(3):246-51. PubMed ID: 18606201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled assembly of Fe3O4 magnetic nanoparticles on graphene oxide.
    Zhang Y; Chen B; Zhang L; Huang J; Chen F; Yang Z; Yao J; Zhang Z
    Nanoscale; 2011 Apr; 3(4):1446-50. PubMed ID: 21301708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical characteristics of Fe3O4 magnetic nanocomposites based on Poly(N-isopropylacrylamide) for anti-cancer drug delivery.
    Davaran S; Alimirzalu S; Nejati-Koshki K; Nasrabadi HT; Akbarzadeh A; Khandaghi AA; Abbasian M; Alimohammadi S
    Asian Pac J Cancer Prev; 2014; 15(1):49-54. PubMed ID: 24528080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.