BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22989219)

  • 21. Remotely controlled diffusion from magnetic liposome microgels.
    Hanuš J; Ullrich M; Dohnal J; Singh M; Stěpánek F
    Langmuir; 2013 Apr; 29(13):4381-7. PubMed ID: 23461732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catechol-metal coordination-mediated nanocomposite hydrogels for on-demand drug delivery and efficacious combination therapy.
    Dai G; Sun L; Xu J; Zhao G; Tan Z; Wang C; Sun X; Xu K; Zhong W
    Acta Biomater; 2021 Jul; 129():84-95. PubMed ID: 34010690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined Magnetoliposome Formation and Drug Loading in One Step for Efficient Alternating Current-Magnetic Field Remote-Controlled Drug Release.
    Fortes Brollo ME; Domínguez-Bajo A; Tabero A; Domínguez-Arca V; Gisbert V; Prieto G; Johansson C; Garcia R; Villanueva A; Serrano MC; Morales MDP
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4295-4307. PubMed ID: 31904927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields.
    Golovin YI; Gribanovsky SL; Golovin DY; Klyachko NL; Majouga AG; Master АM; Sokolsky M; Kabanov AV
    J Control Release; 2015 Dec; 219():43-60. PubMed ID: 26407671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy.
    T S A; Lu YJ; Chen JP
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic hydrogel nanocomposites as remote controlled microfluidic valves.
    Satarkar NS; Zhang W; Eitel RE; Hilt JZ
    Lab Chip; 2009 Jun; 9(12):1773-9. PubMed ID: 19495462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic nanoparticle hyperthermia induced cytosine deaminase expression in microencapsulated E. coli for enzyme-prodrug therapy.
    Nemani KV; Ennis RC; Griswold KE; Gimi B
    J Biotechnol; 2015 Jun; 203():32-40. PubMed ID: 25820125
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.
    Kalambur VS; Longmire EK; Bischof JC
    Langmuir; 2007 Nov; 23(24):12329-36. PubMed ID: 17960940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogel nanocomposites as remote-controlled biomaterials.
    Satarkar NS; Zach Hilt J
    Acta Biomater; 2008 Jan; 4(1):11-6. PubMed ID: 17855176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Remote Controlling DNA Hydrogel by Magnetic Field.
    Ma X; Yang Z; Wang Y; Zhang G; Shao Y; Jia H; Cao T; Wang R; Liu D
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):1995-2000. PubMed ID: 28054768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inorganic nanosystems for therapeutic delivery: status and prospects.
    Kim CS; Tonga GY; Solfiell D; Rotello VM
    Adv Drug Deliv Rev; 2013 Jan; 65(1):93-9. PubMed ID: 22981754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biocompatibility analysis of magnetic hydrogel nanocomposites based on poly(N-isopropylacrylamide) and iron oxide.
    Meenach SA; Anderson AA; Suthar M; Anderson KW; Hilt JZ
    J Biomed Mater Res A; 2009 Dec; 91(3):903-9. PubMed ID: 19090484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetically responsive biopolymeric multilayer films for local hyperthermia.
    Criado M; Sanz B; Goya GF; Mijangos C; Hernández R
    J Mater Chem B; 2017 Nov; 5(43):8570-8578. PubMed ID: 32264525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stable single-crystalline body centered cubic Fe nanoparticles.
    Lacroix LM; Huls NF; Ho D; Sun X; Cheng K; Sun S
    Nano Lett; 2011 Apr; 11(4):1641-5. PubMed ID: 21417366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using phosphatases to generate self-assembled nanostructures and their applications.
    Zhang J; Gao J; Chen M; Yang Z
    Antioxid Redox Signal; 2014 May; 20(14):2179-90. PubMed ID: 24180369
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications.
    Shi D; Sadat ME; Dunn AW; Mast DB
    Nanoscale; 2015 May; 7(18):8209-32. PubMed ID: 25899408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating.
    Attaluri A; Kandala SK; Zhou H; Wabler M; DeWeese TL; Ivkov R
    Int J Hyperthermia; 2020 Dec; 37(3):108-119. PubMed ID: 33426990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetothermal Multiplexing for Selective Remote Control of Cell Signaling.
    Moon J; Christiansen MG; Rao S; Marcus C; Bono DC; Rosenfeld D; Gregurec D; Varnavides G; Chiang PH; Park S; Anikeeva P
    Adv Funct Mater; 2020 Sep; 30(36):. PubMed ID: 35531589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.