BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22989268)

  • 1. Pyramidalization of the glycosidic nitrogen provides the way for efficient cleavage of the N-glycosidic bond of 8-OxoG with the hOGG1 DNA repair protein.
    Šebera J; Trantírek L; Tanaka Y; Sychrovský V
    J Phys Chem B; 2012 Oct; 116(41):12535-44. PubMed ID: 22989268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine.
    Šebera J; Hattori Y; Sato D; Reha D; Nencka R; Kohno T; Kojima C; Tanaka Y; Sychrovský V
    Nucleic Acids Res; 2017 May; 45(9):5231-5242. PubMed ID: 28334993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational clues for a new mechanism in the glycosylase activity of the human DNA repair protein hOGG1. A generalized paradigm for purine-repairing systems?
    Calvaresi M; Bottoni A; Garavelli M
    J Phys Chem B; 2007 Jun; 111(23):6557-70. PubMed ID: 17508740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum theoretical study of cleavage of the glycosidic bond of 2'-deoxyadenosine: base excision-repair mechanism of DNA by MutY.
    Tiwari S; Agnihotri N; Mishra PC
    J Phys Chem B; 2011 Mar; 115(12):3200-7. PubMed ID: 21384840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the major oxidative damage 7,8-dihydro-8-oxoguanine presented into a catalytically competent DNA glycosylase.
    Schmaltz LF; Ceniceros JE; Lee S
    Biochem J; 2022 Nov; 479(21):2297-2309. PubMed ID: 36268656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Product inhibition and magnesium modulate the dual reaction mode of hOgg1.
    Morland I; Luna L; Gustad E; Seeberg E; Bjørås M
    DNA Repair (Amst); 2005 Mar; 4(3):381-7. PubMed ID: 15661661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmark Theoretical and Experimental Study on (15)N NMR Shifts of Oxidatively Damaged Guanine.
    Dračínský M; Šála M; Klepetářová B; Šebera J; Fukal J; Holečková V; Tanaka Y; Nencka R; Sychrovský V
    J Phys Chem B; 2016 Feb; 120(5):915-25. PubMed ID: 26727398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair activities of human 8-oxoguanine DNA glycosylase are stimulated by the interaction with human checkpoint sensor Rad9-Rad1-Hus1 complex.
    Park MJ; Park JH; Hahm SH; Ko SI; Lee YR; Chung JH; Sohn SY; Cho Y; Kang LW; Han YS
    DNA Repair (Amst); 2009 Oct; 8(10):1190-200. PubMed ID: 19615952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of the human DNA repair protein HOGG1 activity.
    Schyman P; Danielsson J; Pinak M; Laaksonen A
    J Phys Chem A; 2005 Mar; 109(8):1713-9. PubMed ID: 16833496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [New non-hydrolyzable substrate analogs for 8-oxoguanine-DNA glycosylases].
    Taraneneko MV; Volkov EM; Saparbarv MK; Kuznetsov SA
    Mol Biol (Mosk); 2004; 38(5):858-68. PubMed ID: 15554188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition and excision properties of 8-halogenated-7-deaza-2'-deoxyguanosine as 8-oxo-2'-deoxyguanosine analogues and Fpg and hOGG1 inhibitors.
    Yin Y; Sasaki S; Taniguchi Y
    Chembiochem; 2015 May; 16(8):1190-8. PubMed ID: 25900576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation-of-function mutants unravel the dual-reaction mode of human 8-oxoguanine DNA glycosylase.
    Dalhus B; Forsbring M; Helle IH; Vik ES; Forstrøm RJ; Backe PH; Alseth I; Bjørås M
    Structure; 2011 Jan; 19(1):117-27. PubMed ID: 21220122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic and conformational flexibility of the covalent linkage formed during β-lyase activity on an AP-site: application to hOgg1.
    Kellie JL; Wetmore SD
    J Phys Chem B; 2012 Sep; 116(35):10786-97. PubMed ID: 22877319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical studies on the thermodynamics and kinetics of the N-glycosidic bond cleavage in deoxythymidine glycol.
    Chen ZQ; Zhang CH; Xue Y
    J Phys Chem B; 2009 Jul; 113(30):10409-20. PubMed ID: 19719287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characterization of Clostridium acetobutylicum 8-oxoguanine DNA glycosylase in its apo form and in complex with 8-oxodeoxyguanosine.
    Faucher F; Robey-Bond SM; Wallace SS; Doublié S
    J Mol Biol; 2009 Apr; 387(3):669-79. PubMed ID: 19361427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of N-glycosidic bond of (5'S)-8,5'-cyclo-2'-deoxyguanosine.
    Das RS; Samaraweera M; Morton M; Gascón JA; Basu AK
    Chem Res Toxicol; 2012 Nov; 25(11):2451-61. PubMed ID: 23025578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enforced presentation of an extrahelical guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1.
    Crenshaw CM; Nam K; Oo K; Kutchukian PS; Bowman BR; Karplus M; Verdine GL
    J Biol Chem; 2012 Jul; 287(30):24916-28. PubMed ID: 22511791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ionization, metal cationization and protonation on 2'-deoxyguanosine: changes on sugar puckering and stability of the N-glycosidic bond.
    Ríos-Font R; Bertran J; Rodríguez-Santiago L; Sodupe M
    J Phys Chem B; 2006 Mar; 110(11):5767-72. PubMed ID: 16539523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the chemical step utilized by human alkyladenine DNA glycosylase: a concerted mechanism AIDS in selectively excising damaged purines.
    Rutledge LR; Wetmore SD
    J Am Chem Soc; 2011 Oct; 133(40):16258-69. PubMed ID: 21877721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guanine-specific oxidation of double-stranded DNA by Cr(VI) and ascorbic acid forms spiroiminodihydantoin and 8-oxo-2'-deoxyguanosine.
    Slade PG; Hailer MK; Martin BD; Sugden KD
    Chem Res Toxicol; 2005 Jul; 18(7):1140-9. PubMed ID: 16022506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.