These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 22989533)
21. Discovery of MEK/PI3K dual inhibitor via structure-based virtual screening. Park H; Lee S; Hong S Bioorg Med Chem Lett; 2012 Aug; 22(15):4946-50. PubMed ID: 22771009 [TBL] [Abstract][Full Text] [Related]
22. Discovery of a potent and highly selective PDK1 inhibitor via fragment-based drug discovery. Erlanson DA; Arndt JW; Cancilla MT; Cao K; Elling RA; English N; Friedman J; Hansen SK; Hession C; Joseph I; Kumaravel G; Lee WC; Lind KE; McDowell RS; Miatkowski K; Nguyen C; Nguyen TB; Park S; Pathan N; Penny DM; Romanowski MJ; Scott D; Silvian L; Simmons RL; Tangonan BT; Yang W; Sun L Bioorg Med Chem Lett; 2011 May; 21(10):3078-83. PubMed ID: 21459573 [TBL] [Abstract][Full Text] [Related]
23. Identification of novel inhibitors of extracellular signal-regulated kinase 2 based on the structure-based virtual screening. Park H; Bahn YJ; Jeong DG; Woo EJ; Kwon JS; Ryu SE Bioorg Med Chem Lett; 2008 Oct; 18(20):5372-6. PubMed ID: 18835158 [TBL] [Abstract][Full Text] [Related]
24. Identification of novel inhibitors of mitogen-activated protein kinase phosphatase-1 with structure-based virtual screening. Park H; Jeon JY; Kim SY; Jeong DG; Ryu SE J Comput Aided Mol Des; 2011 May; 25(5):469-75. PubMed ID: 21567231 [TBL] [Abstract][Full Text] [Related]
25. Identification of Novel Selective Lysine-Specific Demethylase 1 (LSD1) Inhibitors Using a Pharmacophore-Based Virtual Screening Combined with Docking. Zhou C; Kang D; Xu Y; Zhang L; Zha X Chem Biol Drug Des; 2015 Jun; 85(6):659-71. PubMed ID: 25346381 [TBL] [Abstract][Full Text] [Related]
26. PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Zhang S; Zhang ZY Drug Discov Today; 2007 May; 12(9-10):373-81. PubMed ID: 17467573 [TBL] [Abstract][Full Text] [Related]
27. Combining NMR and X-ray crystallography in fragment-based drug discovery: discovery of highly potent and selective BACE-1 inhibitors. Wyss DF; Wang YS; Eaton HL; Strickland C; Voigt JH; Zhu Z; Stamford AW Top Curr Chem; 2012; 317():83-114. PubMed ID: 21647837 [TBL] [Abstract][Full Text] [Related]
28. Structure-based de novo design and biochemical evaluation of novel Cdc25 phosphatase inhibitors. Park H; Bahn YJ; Ryu SE Bioorg Med Chem Lett; 2009 Aug; 19(15):4330-4. PubMed ID: 19497739 [TBL] [Abstract][Full Text] [Related]
29. Synthesis and biological evaluation of 2,4,6-trihydroxychalcone derivatives as novel protein tyrosine phosphatase 1B inhibitors. Sun LP; Gao LX; Ma WP; Nan FJ; Li J; Piao HR Chem Biol Drug Des; 2012 Oct; 80(4):584-90. PubMed ID: 22805439 [TBL] [Abstract][Full Text] [Related]
30. Structural insights into the homology and differences between mouse protein tyrosine phosphatase-sigma and human protein tyrosine phosphatase-sigma. Hou L; Wang J; Zhou Y; Li J; Zang Y; Li J Acta Biochim Biophys Sin (Shanghai); 2011 Dec; 43(12):977-88. PubMed ID: 22027896 [TBL] [Abstract][Full Text] [Related]
31. Identification of 1,2,5-oxadiazoles as a new class of SENP2 inhibitors using structure based virtual screening. Kumar A; Ito A; Takemoto M; Yoshida M; Zhang KY J Chem Inf Model; 2014 Mar; 54(3):870-80. PubMed ID: 24512059 [TBL] [Abstract][Full Text] [Related]
32. BEAR, a novel virtual screening methodology for drug discovery. Degliesposti G; Portioli C; Parenti MD; Rastelli G J Biomol Screen; 2011 Jan; 16(1):129-33. PubMed ID: 21084717 [TBL] [Abstract][Full Text] [Related]
33. Discovery of novel Cdc25 phosphatase inhibitors with micromolar activity based on the structure-based virtual screening. Park H; Bahn YJ; Jung SK; Jeong DG; Lee SH; Seo I; Yoon TS; Kim SJ; Ryu SE J Med Chem; 2008 Sep; 51(18):5533-41. PubMed ID: 18714978 [TBL] [Abstract][Full Text] [Related]
34. High-throughput discovery of Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) inhibitors using click chemistry. Tan LP; Wu H; Yang PY; Kalesh KA; Zhang X; Hu M; Srinivasan R; Yao SQ Org Lett; 2009 Nov; 11(22):5102-5. PubMed ID: 19852491 [TBL] [Abstract][Full Text] [Related]
35. Synthesis and LAR inhibition of 7-alkoxy analogues of illudalic acid. Ling Q; Zhou YY; Cai ZL; Zhang YH; Xiong B; Ma LP; Wang X; Li X; Li J; Shen JK Yao Xue Xue Bao; 2010 Nov; 45(11):1385-97. PubMed ID: 21355526 [TBL] [Abstract][Full Text] [Related]
36. Structure-activity studies of PTPRD phosphatase inhibitors identify a 7-cyclopentymethoxy illudalic acid analog candidate for development. Henderson IM; Zeng F; Bhuiyan NH; Luo D; Martinez M; Smoake J; Bi F; Perera C; Johnson D; Prisinzano TE; Wang W; Uhl GR Biochem Pharmacol; 2022 Jan; 195():114868. PubMed ID: 34863978 [TBL] [Abstract][Full Text] [Related]
37. Inhibitor scaffold for the histone lysine demethylase KDM4C (JMJD2C). Leurs U; Clausen RP; Kristensen JL; Lohse B Bioorg Med Chem Lett; 2012 Sep; 22(18):5811-3. PubMed ID: 22917519 [TBL] [Abstract][Full Text] [Related]
38. Protein Flexibility in Docking-Based Virtual Screening: Discovery of Novel Lymphoid-Specific Tyrosine Phosphatase Inhibitors Using Multiple Crystal Structures. Hou X; Li K; Yu X; Sun JP; Fang H J Chem Inf Model; 2015 Sep; 55(9):1973-83. PubMed ID: 26360643 [TBL] [Abstract][Full Text] [Related]
39. Structure-based discovery of new small molecule inhibitors of low molecular weight protein tyrosine phosphatase. Vidal D; Blobel J; Pérez Y; Thormann M; Pons M Eur J Med Chem; 2007 Aug; 42(8):1102-8. PubMed ID: 17367895 [TBL] [Abstract][Full Text] [Related]
40. Inhibitors of protein tyrosine phosphatases: next-generation drugs? Bialy L; Waldmann H Angew Chem Int Ed Engl; 2005 Jun; 44(25):3814-39. PubMed ID: 15900534 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]