These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22989638)

  • 1. Formation of liquid and solid products from liquid phase pyrolysis.
    Schwaiger N; Witek V; Feiner R; Pucher H; Zahel K; Pieber A; Pucher P; Ahn E; Chernev B; Schroettner H; Wilhelm P; Siebenhofer M
    Bioresour Technol; 2012 Nov; 124():90-4. PubMed ID: 22989638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ observation of radicals and molecular products during lignin pyrolysis.
    Bährle C; Custodis V; Jeschke G; van Bokhoven JA; Vogel F
    ChemSusChem; 2014 Jul; 7(7):2022-9. PubMed ID: 25044866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular products and radicals from pyrolysis of lignin.
    Kibet J; Khachatryan L; Dellinger B
    Environ Sci Technol; 2012 Dec; 46(23):12994-3001. PubMed ID: 23131040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquefaction of lignocellulosic biomass for methane production: A review.
    Ghimire N; Bakke R; Bergland WH
    Bioresour Technol; 2021 Jul; 332():125068. PubMed ID: 33849751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass.
    Maddi B; Viamajala S; Varanasi S
    Bioresour Technol; 2011 Dec; 102(23):11018-26. PubMed ID: 21983407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal decomposition of lignocellulosic biomass in the presence of acid catalysts.
    Larabi C; al Maksoud W; Szeto KC; Roubaud A; Castelli P; Santini CC; Walter JJ
    Bioresour Technol; 2013 Nov; 148():255-60. PubMed ID: 24055967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pyrolytic degradation of wood-derived lignin from pulping process.
    Shen DK; Gu S; Luo KH; Wang SR; Fang MX
    Bioresour Technol; 2010 Aug; 101(15):6136-46. PubMed ID: 20307972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lignocellulosic biomass-based pyrolysis: A comprehensive review.
    K N Y; T PD; P S; S K; R YK; Varjani S; AdishKumar S; Kumar G; J RB
    Chemosphere; 2022 Jan; 286(Pt 2):131824. PubMed ID: 34388872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the pyrolysis behavior of lignins from different tree species.
    Wang S; Wang K; Liu Q; Gu Y; Luo Z; Cen K; Fransson T
    Biotechnol Adv; 2009; 27(5):562-7. PubMed ID: 19393737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L; López-González D; Villaseñor J; Sánchez P; Valverde JL
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass.
    Fabbri D; Torri C
    Curr Opin Biotechnol; 2016 Apr; 38():167-73. PubMed ID: 26948108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis.
    Islam MR; Parveen M; Haniu H
    Bioresour Technol; 2010 Jun; 101(11):4162-8. PubMed ID: 20133132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of zinc chloride addition on the chemical structure of bio-oil obtained during co-pyrolysis of wood/synthetic polymer blends.
    Rutkowski P
    Waste Manag; 2009 Dec; 29(12):2983-93. PubMed ID: 19720516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism.
    Wang H; Wang X; Cui Y; Xue Z; Ba Y
    Bioresour Technol; 2018 Sep; 263():444-449. PubMed ID: 29772506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NOx and N2O precursors from biomass pyrolysis: role of cellulose, hemicellulose and lignin.
    Ren Q; Zhao C
    Environ Sci Technol; 2013 Aug; 47(15):8955-61. PubMed ID: 23848228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of the products from pyrolysis of residues after acid hydrolysis of Miscanthus.
    Melligan F; Dussan K; Auccaise R; Novotny EH; Leahy JJ; Hayes MH; Kwapinski W
    Bioresour Technol; 2012 Mar; 108():258-63. PubMed ID: 22281143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical view on catalytic pyrolysis of biomass.
    Venderbosch RH
    ChemSusChem; 2015 Apr; 8(8):1306-16. PubMed ID: 25872757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The origin of molecular mobility during biomass pyrolysis as revealed by in situ (1)H NMR spectroscopy.
    Dufour A; Castro-Diaz M; Brosse N; Bouroukba M; Snape C
    ChemSusChem; 2012 Jul; 5(7):1258-65. PubMed ID: 22573541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils.
    Vispute TP; Zhang H; Sanna A; Xiao R; Huber GW
    Science; 2010 Nov; 330(6008):1222-7. PubMed ID: 21109668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics and kinetics of cattle litter pyrolysis in a tubing reactor.
    Ngo TA; Kim J; Kim SS
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S104-8. PubMed ID: 19592241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.