BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22989711)

  • 1. Chromatin signature discovery via histone modification profile alignments.
    Wang J; Lunyak VV; Jordan IK
    Nucleic Acids Res; 2012 Nov; 40(21):10642-56. PubMed ID: 22989711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.
    Hon G; Ren B; Wang W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combinatorial chromatin modification patterns in the human genome revealed by subspace clustering.
    Ucar D; Hu Q; Tan K
    Nucleic Acids Res; 2011 May; 39(10):4063-75. PubMed ID: 21266477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DELTA: A Distal Enhancer Locating Tool Based on AdaBoost Algorithm and Shape Features of Chromatin Modifications.
    Lu Y; Qu W; Shan G; Zhang C
    PLoS One; 2015; 10(6):e0130622. PubMed ID: 26091399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features.
    Chen CY; Morris Q; Mitchell JA
    BMC Genomics; 2012 Apr; 13():152. PubMed ID: 22537144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin proteomics reveals novel combinatorial histone modification signatures that mark distinct subpopulations of macrophage enhancers.
    Soldi M; Mari T; Nicosia L; Musiani D; Sigismondo G; Cuomo A; Pavesi G; Bonaldi T
    Nucleic Acids Res; 2017 Dec; 45(21):12195-12213. PubMed ID: 28981749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome.
    Heintzman ND; Stuart RK; Hon G; Fu Y; Ching CW; Hawkins RD; Barrera LO; Van Calcar S; Qu C; Ching KA; Wang W; Weng Z; Green RD; Crawford GE; Ren B
    Nat Genet; 2007 Mar; 39(3):311-8. PubMed ID: 17277777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ChARM: Discovery of combinatorial chromatin modification patterns in hepatitis B virus X-transformed mouse liver cancer using association rule mining.
    Park SH; Lee SM; Kim YJ; Kim S
    BMC Bioinformatics; 2016 Dec; 17(Suppl 16):452. PubMed ID: 28105934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide enhancer prediction from epigenetic signatures using genetic algorithm-optimized support vector machines.
    Fernández M; Miranda-Saavedra D
    Nucleic Acids Res; 2012 May; 40(10):e77. PubMed ID: 22328731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery and annotation of functional chromatin signatures in the human genome.
    Hon G; Wang W; Ren B
    PLoS Comput Biol; 2009 Nov; 5(11):e1000566. PubMed ID: 19918365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LinkNMF: identification of histone modification modules in the human genome using nonnegative matrix factorization.
    Jung I; Kim D
    Gene; 2013 Apr; 518(1):215-21. PubMed ID: 23266811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bivalent-like chromatin markers are predictive for transcription start site distribution in human.
    Zhang Z; Ma X; Zhang MQ
    PLoS One; 2012; 7(6):e38112. PubMed ID: 22768038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unique chromatin signature uncovers early developmental enhancers in humans.
    Rada-Iglesias A; Bajpai R; Swigut T; Brugmann SA; Flynn RA; Wysocka J
    Nature; 2011 Feb; 470(7333):279-83. PubMed ID: 21160473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confident gene activity prediction based on single histone modification H2BK5ac in human cell lines.
    Chitsazian F; Sadeghi M; Elahi E
    BMC Bioinformatics; 2017 Jan; 18(1):67. PubMed ID: 28122488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering cooperative relationships of chromatin modifications in human T cells based on a proposed closeness measure.
    Lv J; Qiao H; Liu H; Wu X; Zhu J; Su J; Wang F; Cui Y; Zhang Y
    PLoS One; 2010 Dec; 5(12):e14219. PubMed ID: 21151929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finding combinatorial histone code by semi-supervised biclustering.
    Teng L; Tan K
    BMC Genomics; 2012 Jul; 13():301. PubMed ID: 22759587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of regulatory elements in mammalian genomes using chromatin signatures.
    Won KJ; Chepelev I; Ren B; Wang W
    BMC Bioinformatics; 2008 Dec; 9():547. PubMed ID: 19094206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global analysis of histone modifications and long-range chromatin interactions revealed the differential cistrome changes and novel transcriptional players in human dilated cardiomyopathy.
    Liu CF; Abnousi A; Bazeley P; Ni Y; Morley M; Moravec CS; Hu M; Tang WHW
    J Mol Cell Cardiol; 2020 Aug; 145():30-42. PubMed ID: 32533974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RFECS: a random-forest based algorithm for enhancer identification from chromatin state.
    Rajagopal N; Xie W; Li Y; Wagner U; Wang W; Stamatoyannopoulos J; Ernst J; Kellis M; Ren B
    PLoS Comput Biol; 2013; 9(3):e1002968. PubMed ID: 23526891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clustered ChIP-Seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements.
    Rye M; Sætrom P; Håndstad T; Drabløs F
    BMC Biol; 2011 Nov; 9():80. PubMed ID: 22115494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.