These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 22989723)
1. Oral squamous carcinoma cells secrete RANKL directly supporting osteolytic bone loss. Zhang X; Junior CR; Liu M; Li F; D'Silva NJ; Kirkwood KL Oral Oncol; 2013 Feb; 49(2):119-28. PubMed ID: 22989723 [TBL] [Abstract][Full Text] [Related]
2. Characterization of bone resorption in novel in vitro and in vivo models of oral squamous cell carcinoma. Martin CK; Dirksen WP; Shu ST; Werbeck JL; Thudi NK; Yamaguchi M; Wolfe TD; Heller KN; Rosol TJ Oral Oncol; 2012 Jun; 48(6):491-9. PubMed ID: 22265717 [TBL] [Abstract][Full Text] [Related]
3. Role of CXC chemokine ligand 13 in oral squamous cell carcinoma associated osteolysis in athymic mice. Pandruvada SN; Yuvaraj S; Liu X; Sundaram K; Shanmugarajan S; Ries WL; Norris JS; London SD; Reddy SV Int J Cancer; 2010 May; 126(10):2319-29. PubMed ID: 19816883 [TBL] [Abstract][Full Text] [Related]
4. The inhibition of RANKL/RANK signaling by osteoprotegerin suppresses bone invasion by oral squamous cell carcinoma cells. Shin M; Matsuo K; Tada T; Fukushima H; Furuta H; Ozeki S; Kadowaki T; Yamamoto K; Okamoto M; Jimi E Carcinogenesis; 2011 Nov; 32(11):1634-40. PubMed ID: 21890459 [TBL] [Abstract][Full Text] [Related]
6. Loss of RUNX3 expression inhibits bone invasion of oral squamous cell carcinoma. Park J; Kim HJ; Kim KR; Lee SK; Kim H; Park KK; Chung WY Oncotarget; 2017 Feb; 8(6):9079-9092. PubMed ID: 28030842 [TBL] [Abstract][Full Text] [Related]
7. CXCL13 activation of c-Myc induces RANK ligand expression in stromal/preosteoblast cells in the oral squamous cell carcinoma tumor-bone microenvironment. Sambandam Y; Sundaram K; Liu A; Kirkwood KL; Ries WL; Reddy SV Oncogene; 2013 Jan; 32(1):97-105. PubMed ID: 22330139 [TBL] [Abstract][Full Text] [Related]
8. Molecular pathways involved in crosstalk between cancer cells, osteoblasts and osteoclasts in the invasion of bone by oral squamous cell carcinoma. Quan J; Zhou C; Johnson NW; Francis G; Dahlstrom JE; Gao J Pathology; 2012 Apr; 44(3):221-7. PubMed ID: 22406484 [TBL] [Abstract][Full Text] [Related]
9. Secretion of IL-6 and IL-8 from lysophosphatidic acid-stimulated oral squamous cell carcinoma promotes osteoclastogenesis and bone resorption. Hwang YS; Lee SK; Park KK; Chung WY Oral Oncol; 2012 Jan; 48(1):40-8. PubMed ID: 21925926 [TBL] [Abstract][Full Text] [Related]
10. A new osteoclastogenesis pathway induced by cancer cells targeting osteoclast precursor cells. Wada A; Tsuchiya M; Ozaki-Honda Y; Kayamori K; Sakamoto K; Yamaguchi A; Ikeda T Biochem Biophys Res Commun; 2019 Jan; 509(1):108-113. PubMed ID: 30578079 [TBL] [Abstract][Full Text] [Related]
11. Establishment of a xenograft model to explore the mechanism of bone destruction by human oral cancers and its application to analysis of role of RANKL. Tohyama R; Kayamori K; Sato K; Hamagaki M; Sakamoto K; Yasuda H; Yamaguchi A J Oral Pathol Med; 2016 May; 45(5):356-64. PubMed ID: 26859422 [TBL] [Abstract][Full Text] [Related]
12. Zoledronic acid reduces bone loss and tumor growth in an orthotopic xenograft model of osteolytic oral squamous cell carcinoma. Martin CK; Werbeck JL; Thudi NK; Lanigan LG; Wolfe TD; Toribio RE; Rosol TJ Cancer Res; 2010 Nov; 70(21):8607-16. PubMed ID: 20959474 [TBL] [Abstract][Full Text] [Related]
13. RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes. Armstrong AP; Miller RE; Jones JC; Zhang J; Keller ET; Dougall WC Prostate; 2008 Jan; 68(1):92-104. PubMed ID: 18008334 [TBL] [Abstract][Full Text] [Related]
14. Oral squamous cell carcinoma cells induce osteoclast differentiation by suppression of osteoprotegerin expression in osteoblasts. Tada T; Jimi E; Okamoto M; Ozeki S; Okabe K Int J Cancer; 2005 Aug; 116(2):253-62. PubMed ID: 15800904 [TBL] [Abstract][Full Text] [Related]
15. Selective inhibition of NF-κB suppresses bone invasion by oral squamous cell carcinoma in vivo. Furuta H; Osawa K; Shin M; Ishikawa A; Matsuo K; Khan M; Aoki K; Ohya K; Okamoto M; Tominaga K; Takahashi T; Nakanishi O; Jimi E Int J Cancer; 2012 Sep; 131(5):E625-35. PubMed ID: 22262470 [TBL] [Abstract][Full Text] [Related]
17. Characterization of different osteoclast phenotypes in the progression of bone invasion by oral squamous cell carcinoma. Quan J; Hou Y; Long W; Ye S; Wang Z Oncol Rep; 2018 Mar; 39(3):1043-1051. PubMed ID: 29286135 [TBL] [Abstract][Full Text] [Related]
18. The RANKL/RANK system as a therapeutic target for bone invasion by oral squamous cell carcinoma (Review). Jimi E; Shin M; Furuta H; Tada Y; Kusukawa J Int J Oncol; 2013 Mar; 42(3):803-9. PubMed ID: 23354319 [TBL] [Abstract][Full Text] [Related]
19. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. Cao JJ; Wronski TJ; Iwaniec U; Phleger L; Kurimoto P; Boudignon B; Halloran BP J Bone Miner Res; 2005 Sep; 20(9):1659-68. PubMed ID: 16059637 [TBL] [Abstract][Full Text] [Related]
20. Effect of YM529 on a model of mandibular invasion by oral squamous cell carcinoma in mice. Cui N; Nomura T; Noma H; Yokoo K; Takagi R; Hashimoto S; Okamoto M; Sato M; Yu G; Guo C; Shibahala T Clin Cancer Res; 2005 Apr; 11(7):2713-9. PubMed ID: 15814653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]