These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 22989751)

  • 21. [The significance of cathepsins B and D and their inhibitors in cancer disease].
    Drewa T; Olszewska D; Makarewicz R; Drewa J; Wozniak A; Kowalke K
    Pol Merkur Lekarski; 2001 Jul; 11(61):88-90. PubMed ID: 11579841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anti-tumor activity of benzylideneacetophenone derivatives via proteasomal inhibition in prostate cancer cells.
    Lee YH; Yun J; Jung JC; Oh S; Jung YS
    Pharmazie; 2016 May; 71(5):274-9. PubMed ID: 27348972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aurantiamide acetate, a selective cathepsin inhibitor, produced by Aspergillus penicilloides.
    Isshiki K; Asai Y; Tanaka S; Nishio M; Uchida T; Okuda T; Komatsubara S; Sakurai N
    Biosci Biotechnol Biochem; 2001 May; 65(5):1195-7. PubMed ID: 11440138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of lysosomal proteinase inhibition on the development of the rat embryo in vitro.
    Daston GP; Baines D; Yonker JE; Lehman-McKeeman LD
    Teratology; 1991 Mar; 43(3):253-61. PubMed ID: 2014487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and selective cytotoxic activity of novel hybrid chalcones against prostate cancer cells.
    Nagaraju M; Gnana Deepthi E; Ashwini C; Vishnuvardhan MV; Lakshma Nayak V; Chandra R; Ramakrishna S; Gawali BB
    Bioorg Med Chem Lett; 2012 Jul; 22(13):4314-7. PubMed ID: 22668451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonpeptidic, noncovalent inhibitors of the cysteine protease cathepsin S.
    Thurmond RL; Beavers MP; Cai H; Meduna SP; Gustin DJ; Sun S; Almond HJ; Karlsson L; Edwards JP
    J Med Chem; 2004 Sep; 47(20):4799-801. PubMed ID: 15369380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conformationally constrained 1,3-diamino ketones: a series of potent inhibitors of the cysteine protease cathepsin K.
    Marquis RW; Yamashita DS; Ru Y; LoCastro SM; Oh HJ; Erhard KF; DesJarlais RL; Head MS; Smith WW; Zhao B; Janson CA; Abdel-Meguid SS; Tomaszek TA; Levy MA; Veber DF
    J Med Chem; 1998 Sep; 41(19):3563-7. PubMed ID: 9733481
    [No Abstract]   [Full Text] [Related]  

  • 28. 4-Aminophenoxyacetic acids as a novel class of reversible cathepsin K inhibitors.
    Shinozuka T; Shimada K; Matsui S; Yamane T; Ama M; Fukuda T; Taki M; Naito S
    Bioorg Med Chem Lett; 2006 Mar; 16(6):1502-5. PubMed ID: 16380250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Straightforward synthesis of 2,4,6-trisubstituted 1,3,5-triazine compounds targeting cysteine cathepsins K and S.
    Plebanek E; Chevrier F; Roy V; Garenne T; Lecaille F; Warszycki D; Bojarski AJ; Lalmanach G; Agrofoglio LA
    Eur J Med Chem; 2016 Oct; 121():12-20. PubMed ID: 27214508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immunolocalization of cysteine proteinases (cathepsins) and cysteine proteinase inhibitors (salarin and salmon kininogen) in Atlantic salmon, Salmo salar.
    Tähtinen V; Weber E; Günther D; Ylönen A; Kalkkinen N; Olsen R; Järvinen M; Söderström KO; Rinne A; Björklund H; Bøgwald J
    Cell Tissue Res; 2002 Nov; 310(2):213-22. PubMed ID: 12397376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3,4-disubstituted azetidinones as selective inhibitors of the cysteine protease cathepsin K. Exploring P3 elements for potency and selectivity.
    Setti EL; Davis D; Janc JW; Jeffery DA; Cheung H; Yu W
    Bioorg Med Chem Lett; 2005 Mar; 15(5):1529-34. PubMed ID: 15713422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-based development of pyridoxal propionate derivatives as specific inhibitors of cathepsin K in vitro and in vivo.
    Katunuma N; Matsui A; Inubushi T; Murata E; Kakegawa H; Ohba Y; Turk D; Turk V; Tada Y; Asao T
    Biochem Biophys Res Commun; 2000 Jan; 267(3):850-4. PubMed ID: 10673380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors: when reaction mechanism is more important than specificity.
    Rozman-Pungercar J; Kopitar-Jerala N; Bogyo M; Turk D; Vasiljeva O; Stefe I; Vandenabeele P; Brömme D; Puizdar V; Fonović M; Trstenjak-Prebanda M; Dolenc I; Turk V; Turk B
    Cell Death Differ; 2003 Aug; 10(8):881-8. PubMed ID: 12867995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of chalcone derivatives on steroidal framework and their anticancer activities.
    Saxena HO; Faridi U; Kumar JK; Luqman S; Darokar MP; Shanker K; Chanotiya CS; Gupta MM; Negi AS
    Steroids; 2007 Nov; 72(13):892-900. PubMed ID: 17850837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Benzodioxocin-3-ones and N-acyl-3-amino-3-buten-2-ones: novel classes of cathepsin K cysteine protease inhibitors.
    Yamashita DS; Xie R; Lin H; Wang B; Shi SD; Quinn CJ; Hemling ME; Hissong C; Tomaszek TA; Veber DF
    J Pept Res; 2004 Mar; 63(3):265-9. PubMed ID: 15049838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibitors of cysteine cathepsin and calpain do not prevent ultraviolet-B-induced apoptosis in human keratinocytes and HeLa cells.
    Bang B; Baadsgaard O; Skov L; Jäättelä M
    Arch Dermatol Res; 2004 Jul; 296(2):67-73. PubMed ID: 15148608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics.
    Yasuda Y; Kaleta J; Brömme D
    Adv Drug Deliv Rev; 2005 May; 57(7):973-93. PubMed ID: 15876399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cathepsins X and B display distinct activity profiles that can be exploited for inhibitor design.
    Ménard R; Therrien C; Lachance P; Sulea T; Qo H; Alvarez-Hernandez AD; Roush WR
    Biol Chem; 2001 May; 382(5):839-45. PubMed ID: 11517939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring Promising Immunomodulatory Potential of Natural and Synthetic 1,3-Diphenyl-2-propen-1-one Analogs: A Review of Mechanistic Insight.
    Safdar MH; Hasan H; Afzal S; Hussain Z
    Mini Rev Med Chem; 2018; 18(12):1047-1063. PubMed ID: 29173165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Postictal blockade of ischemic hippocampal neuronal death in primates using selective cathepsin inhibitors.
    Tsuchiya K; Kohda Y; Yoshida M; Zhao L; Ueno T; Yamashita J; Yoshioka T; Kominami E; Yamashima T
    Exp Neurol; 1999 Feb; 155(2):187-94. PubMed ID: 10072294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.