These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 22989771)

  • 1. Mathematical modeling of vesicle drug delivery systems 2: targeted vesicle interactions with cells, tumors, and the body.
    Ying CT; Wang J; Lamm RJ; Kamei DT
    J Lab Autom; 2013 Feb; 18(1):46-62. PubMed ID: 22989771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modeling of vesicle drug delivery systems 1: vesicle formation and stability along with drug loading and release.
    Mosley GL; Yamanishi CD; Kamei DT
    J Lab Autom; 2013 Feb; 18(1):34-45. PubMed ID: 23032170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive and active drug targeting: drug delivery to tumors as an example.
    Torchilin VP
    Handb Exp Pharmacol; 2010; (197):3-53. PubMed ID: 20217525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled diffusional release of dispersed solute drugs from biodegradable implants of various geometries.
    Collins R; Paul Z; Reynolds DB; Short RF; Wasuwanich S
    Biomed Sci Instrum; 1997; 33():137-42. PubMed ID: 9731349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the systemic drug delivery efficacy of nanoparticles using a transferrin variant for targeting.
    Chiu RY; Tsuji T; Wang SJ; Wang J; Liu CT; Kamei DT
    J Control Release; 2014 Apr; 180():33-41. PubMed ID: 24524898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress.
    Marcucci F; Lefoulon F
    Drug Discov Today; 2004 Mar; 9(5):219-28. PubMed ID: 14980540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modeling analysis of intratumoral disposition of anticancer agents and drug delivery systems.
    Popilski H; Stepensky D
    Expert Opin Drug Metab Toxicol; 2015 May; 11(5):767-84. PubMed ID: 25813659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors.
    Akimoto J; Nakayama M; Okano T
    J Control Release; 2014 Nov; 193():2-8. PubMed ID: 25037017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidics: a focus on improved cancer targeted drug delivery systems.
    Khan IU; Serra CA; Anton N; Vandamme T
    J Control Release; 2013 Dec; 172(3):1065-74. PubMed ID: 23933524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sub-100 nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation.
    Niikura K; Iyo N; Matsuo Y; Mitomo H; Ijiro K
    ACS Appl Mater Interfaces; 2013 May; 5(9):3900-7. PubMed ID: 23566248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymersomes and their applications in cancer delivery and therapy.
    Guan L; Rizzello L; Battaglia G
    Nanomedicine (Lond); 2015; 10(17):2757-80. PubMed ID: 26328898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug delivery design for intravenous route with integrated physicochemistry, pharmacokinetics and pharmacodynamics: illustration with the case of taxane therapeutics.
    Reddy LH; Bazile D
    Adv Drug Deliv Rev; 2014 May; 71():34-57. PubMed ID: 24184489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in polymeric micelles for drug delivery and tumor targeting.
    Kedar U; Phutane P; Shidhaye S; Kadam V
    Nanomedicine; 2010 Dec; 6(6):714-29. PubMed ID: 20542144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacillus-shape design of polymer based drug delivery systems with janus-faced function for synergistic targeted drug delivery and more effective cancer therapy.
    Cui F; Lin J; Li Y; Li Y; Wu H; Yu F; Jia M; Yang X; Wu S; Xie L; Ye S; Luo F; Hou Z
    Mol Pharm; 2015 Apr; 12(4):1318-27. PubMed ID: 25710590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-based targeted therapy for cancer tissue.
    Das M; Mohanty C; Sahoo SK
    Expert Opin Drug Deliv; 2009 Mar; 6(3):285-304. PubMed ID: 19327045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging.
    Yang X; Grailer JJ; Rowland IJ; Javadi A; Hurley SA; Matson VZ; Steeber DA; Gong S
    ACS Nano; 2010 Nov; 4(11):6805-17. PubMed ID: 20958084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor targeting efficiency of bare nanoparticles does not mean the efficacy of loaded anticancer drugs: importance of radionuclide imaging for optimization of highly selective tumor targeting polymeric nanoparticles with or without drug.
    Lee BS; Park K; Park S; Kim GC; Kim HJ; Lee S; Kil H; Oh SJ; Chi D; Kim K; Choi K; Kwon IC; Kim SY
    J Control Release; 2010 Oct; 147(2):253-60. PubMed ID: 20624433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical models for drug delivery to solid tumors.
    el-Kareh AW; Secomb TW
    Crit Rev Biomed Eng; 1997; 25(6):503-71. PubMed ID: 9719859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.