These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 22989771)
21. Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME). Tanaka T; Shiramoto S; Miyashita M; Fujishima Y; Kaneo Y Int J Pharm; 2004 Jun; 277(1-2):39-61. PubMed ID: 15158968 [TBL] [Abstract][Full Text] [Related]
22. Tumour-targeted drug and gene delivery: principles and concepts. Cassidy J; Schätzlein AG Expert Rev Mol Med; 2004 Sep; 6(19):1-17. PubMed ID: 15387893 [TBL] [Abstract][Full Text] [Related]
23. Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. Sultana S; Khan MR; Kumar M; Kumar S; Ali M J Drug Target; 2013 Feb; 21(2):107-25. PubMed ID: 22873288 [TBL] [Abstract][Full Text] [Related]
24. Nanoscaled boron-containing delivery systems and therapeutic agents for cancer treatment. Wang J; Wu W; Jiang X Nanomedicine (Lond); 2015; 10(7):1149-63. PubMed ID: 25929571 [TBL] [Abstract][Full Text] [Related]
25. Nanoparticulate drug delivery systems for cancer chemotherapy. Saha RN; Vasanthakumar S; Bende G; Snehalatha M Mol Membr Biol; 2010 Oct; 27(7):215-31. PubMed ID: 20939772 [TBL] [Abstract][Full Text] [Related]
26. Use of mathematical models to understand anticancer drug delivery and its effect on solid tumors. Li C; Krishnan J; Stebbing J; Xu XY Pharmacogenomics; 2011 Sep; 12(9):1337-48. PubMed ID: 21919608 [TBL] [Abstract][Full Text] [Related]
27. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Maeda H; Bharate GY; Daruwalla J Eur J Pharm Biopharm; 2009 Mar; 71(3):409-19. PubMed ID: 19070661 [TBL] [Abstract][Full Text] [Related]
28. Coarse-grained modeling of vesicle responses to active rotational nanoparticles. Zhang L; Wang X Nanoscale; 2015 Aug; 7(32):13458-67. PubMed ID: 26140682 [TBL] [Abstract][Full Text] [Related]
29. Micropharmacology: An In Silico Approach for Assessing Drug Efficacy Within a Tumor Tissue. Karolak A; Rejniak KA Bull Math Biol; 2019 Sep; 81(9):3623-3641. PubMed ID: 29423880 [TBL] [Abstract][Full Text] [Related]
30. Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy. Wu XL; Kim JH; Koo H; Bae SM; Shin H; Kim MS; Lee BH; Park RW; Kim IS; Choi K; Kwon IC; Kim K; Lee DS Bioconjug Chem; 2010 Feb; 21(2):208-13. PubMed ID: 20073455 [TBL] [Abstract][Full Text] [Related]
31. Cisplatin-Induced Formation of Biocompatible and Biodegradable Polypeptide-Based Vesicles for Targeted Anticancer Drug Delivery. Shirbin SJ; Ladewig K; Fu Q; Klimak M; Zhang X; Duan W; Qiao GG Biomacromolecules; 2015 Aug; 16(8):2463-74. PubMed ID: 26166192 [TBL] [Abstract][Full Text] [Related]
32. Controlled destabilization of a liposomal drug delivery system enhances mitoxantrone antitumor activity. Adlakha-Hutcheon G; Bally MB; Shew CR; Madden TD Nat Biotechnol; 1999 Aug; 17(8):775-9. PubMed ID: 10429242 [TBL] [Abstract][Full Text] [Related]
33. Targeted delivery of an anti-cancer agent via steroid coupled liposomes. Mishra PK; Gulbake A; Jain A; Vyas SP; Jain SK Drug Deliv; 2009 Nov; 16(8):437-47. PubMed ID: 19839788 [TBL] [Abstract][Full Text] [Related]
34. Quantitative control of active targeting of nanocarriers to tumor cells through optimization of folate ligand density. Tang Z; Li D; Sun H; Guo X; Chen Y; Zhou S Biomaterials; 2014 Sep; 35(27):8015-27. PubMed ID: 24947231 [TBL] [Abstract][Full Text] [Related]
35. Does a targeting ligand influence nanoparticle tumor localization or uptake? Pirollo KF; Chang EH Trends Biotechnol; 2008 Oct; 26(10):552-8. PubMed ID: 18722682 [TBL] [Abstract][Full Text] [Related]
36. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. van der Meel R; Vehmeijer LJ; Kok RJ; Storm G; van Gaal EV Adv Drug Deliv Rev; 2013 Oct; 65(10):1284-98. PubMed ID: 24018362 [TBL] [Abstract][Full Text] [Related]
37. Polymeric micelles and nanoemulsions as tumor-targeted drug carriers: Insight through intravital imaging. Rapoport N; Gupta R; Kim YS; O'Neill BE J Control Release; 2015 May; 206():153-60. PubMed ID: 25776738 [TBL] [Abstract][Full Text] [Related]
38. Smart ligand: aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy. Li X; Zhao Q; Qiu L J Control Release; 2013 Oct; 171(2):152-62. PubMed ID: 23777885 [TBL] [Abstract][Full Text] [Related]
39. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Danhier F; Feron O; Préat V J Control Release; 2010 Dec; 148(2):135-46. PubMed ID: 20797419 [TBL] [Abstract][Full Text] [Related]
40. Dual fluorescent HPMA copolymers for passive tumor targeting with pH-sensitive drug release: synthesis and characterization of distribution and tumor accumulation in mice by noninvasive multispectral optical imaging. Hoffmann S; Vystrčilová L; Ulbrich K; Etrych T; Caysa H; Mueller T; Mäder K Biomacromolecules; 2012 Mar; 13(3):652-63. PubMed ID: 22263698 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]