BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 22989992)

  • 1. Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol.
    Favaro L; Jooste T; Basaglia M; Rose SH; Saayman M; Görgens JF; Casella S; van Zyl WH
    Bioengineered; 2013; 4(2):97-102. PubMed ID: 22989992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consolidated bioprocessing of starchy substrates into ethanol by industrial Saccharomyces cerevisiae strains secreting fungal amylases.
    Favaro L; Viktor MJ; Rose SH; Viljoen-Bloom M; van Zyl WH; Basaglia M; Cagnin L; Casella S
    Biotechnol Bioeng; 2015 Sep; 112(9):1751-60. PubMed ID: 25786804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of industrial
    Cripwell RA; Rose SH; Favaro L; van Zyl WH
    Biotechnol Biofuels; 2019; 12():201. PubMed ID: 31452682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consolidated bioprocessing of raw starch to ethanol by Saccharomyces cerevisiae: Achievements and challenges.
    Cripwell RA; Favaro L; Viljoen-Bloom M; van Zyl WH
    Biotechnol Adv; 2020; 42():107579. PubMed ID: 32593775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct ethanol production from starch using a natural isolate, Scheffersomyces shehatae: Toward consolidated bioprocessing.
    Tanimura A; Kikukawa M; Yamaguchi S; Kishino S; Ogawa J; Shima J
    Sci Rep; 2015 Apr; 5():9593. PubMed ID: 25901788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering.
    Hasunuma T; Kondo A
    Biotechnol Adv; 2012; 30(6):1207-18. PubMed ID: 22085593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.
    Görgens JF; Bressler DC; van Rensburg E
    Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating and engineering Saccharomyces cerevisiae promoters for increased amylase expression and bioethanol production from raw starch.
    Myburgh MW; Rose SH; Viljoen-Bloom M
    FEMS Yeast Res; 2020 Sep; 20(6):. PubMed ID: 32785598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges.
    Sharma J; Kumar V; Prasad R; Gaur NA
    Biotechnol Adv; 2022; 56():107925. PubMed ID: 35151789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous secretion of seven lignocellulolytic enzymes by an industrial second-generation yeast strain enables efficient ethanol production from multiple polymeric substrates.
    Claes A; Deparis Q; Foulquié-Moreno MR; Thevelein JM
    Metab Eng; 2020 May; 59():131-141. PubMed ID: 32114024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of industrial amylolytic yeast strains for the production of bioethanol from broken rice.
    Myburgh MW; Cripwell RA; Favaro L; van Zyl WH
    Bioresour Technol; 2019 Dec; 294():122222. PubMed ID: 31683453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae.
    van Zyl WH; Lynd LR; den Haan R; McBride JE
    Adv Biochem Eng Biotechnol; 2007; 108():205-35. PubMed ID: 17846725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural
    Gronchi N; De Bernardini N; Cripwell RA; Treu L; Campanaro S; Basaglia M; Foulquié-Moreno MR; Thevelein JM; Van Zyl WH; Favaro L; Casella S
    Front Microbiol; 2021; 12():768562. PubMed ID: 35126325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering microbes for direct fermentation of cellulose to bioethanol.
    Liu H; Sun J; Chang JS; Shukla P
    Crit Rev Biotechnol; 2018 Nov; 38(7):1089-1105. PubMed ID: 29631429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consolidated bioprocessing of raw starch with Saccharomyces cerevisiae strains expressing fungal alpha-amylase and glucoamylase combinations.
    Sakwa L; Cripwell RA; Rose SH; Viljoen-Bloom M
    FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 30085077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Codon-optimized glucoamylase sGAI of Aspergillus awamori improves starch utilization in an industrial yeast.
    Favaro L; Jooste T; Basaglia M; Rose SH; Saayman M; Görgens JF; Casella S; van Zyl WH
    Appl Microbiol Biotechnol; 2012 Aug; 95(4):957-68. PubMed ID: 22450569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consolidated bioprocessing for bioethanol production by metabolically engineered Bacillus subtilis strains.
    Maleki F; Changizian M; Zolfaghari N; Rajaei S; Noghabi KA; Zahiri HS
    Sci Rep; 2021 Jul; 11(1):13731. PubMed ID: 34215768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing.
    Yamada R; Hasunuma T; Kondo A
    Biotechnol Adv; 2013 Nov; 31(6):754-63. PubMed ID: 23473971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Bioethanol Production from Potato Peel Waste Via Consolidated Bioprocessing with Statistically Optimized Medium.
    Hossain T; Miah AB; Mahmud SA; Mahin AA
    Appl Biochem Biotechnol; 2018 Oct; 186(2):425-442. PubMed ID: 29644595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a recombinant insect-derived amylase performance in simultaneous saccharification and fermentation process with industrial yeasts.
    Celińska E; Borkowska M; Białas W
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2693-707. PubMed ID: 26545757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.