These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2299035)

  • 1. Dynamical behavior of middle ear: theoretical study corresponding to measurement results obtained by a newly developed measuring apparatus.
    Wada H; Kobayashi T
    J Acoust Soc Am; 1990 Jan; 87(1):237-45. PubMed ID: 2299035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnosis of middle ear disease with eardrum perforation by a newly developed sweep frequency measuring apparatus.
    Wada H; Kobayashi T; Tachizaki H
    Audiology; 1992; 31(3):132-9. PubMed ID: 1642564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Middle ear dynamic characteristics of patients obtained by a newly developed measuring apparatus].
    Wada H; Kobayashi T; Suetake M; Shinkawa H
    Nihon Jibiinkoka Gakkai Kaiho; 1989 Apr; 92(4):548-55. PubMed ID: 2769472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic behavior of the middle ear based on sweep frequency tympanometry.
    Wada H; Kobayashi T; Suetake M; Tachizaki H
    Audiology; 1989; 28(3):127-34. PubMed ID: 2735847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical applicability of the sweep frequency measuring apparatus for diagnosis of middle ear diseases.
    Wada H; Koike T; Kobayashi T
    Ear Hear; 1998 Jun; 19(3):240-9. PubMed ID: 9657598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Development of a three-dimensional impedance meter and its clinical applicability to diagnosing middle ear diseases].
    Wada H; Koike T; Kobayashi T
    Nihon Jibiinkoka Gakkai Kaiho; 1994 Aug; 97(8):1443-55. PubMed ID: 7931800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustical transmission-line model of the middle-ear cavities and mastoid air cells.
    Keefe DH
    J Acoust Soc Am; 2015 Apr; 137(4):1877-87. PubMed ID: 25920840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human middle-ear model with compound eardrum and airway branching in mastoid air cells.
    Keefe DH
    J Acoust Soc Am; 2015 May; 137(5):2698-725. PubMed ID: 25994701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the acoustic input immittance of the human ear.
    Rabinowitz WM
    J Acoust Soc Am; 1981 Oct; 70(4):1025-35. PubMed ID: 7288039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental technique for determining middle ear impedance.
    Blayney AW; McAvoy GJ; Rice HJ; Williams KR
    Acta Otolaryngol; 1996 Mar; 116(2):201-4. PubMed ID: 8725514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of dynamic behavior of human middle ear using a finite-element method.
    Wada H; Metoki T; Kobayashi T
    J Acoust Soc Am; 1992 Dec; 92(6):3157-68. PubMed ID: 1474230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooling induces a decrease in middle ear compliance.
    Geal-Dor M; Khvoles R; Sohmer H
    J Basic Clin Physiol Pharmacol; 1997; 8(3):127-32. PubMed ID: 9429981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic impedances at the oval window, and sound pressure transformation of the middle ear in Norwegian cattle.
    Kringlebotn M
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1094-104. PubMed ID: 11008812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I: Middle-ear input impedance.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1992 Jul; 92(1):157-77. PubMed ID: 1512321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive estimation of middle-ear input impedance and efficiency.
    Lewis JD; Neely ST
    J Acoust Soc Am; 2015 Aug; 138(2):977-93. PubMed ID: 26328714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic mechanisms: canal wall-up versus canal wall-down mastoidectomy.
    Whittemore KR; Merchant SN; Rosowski JJ
    Otolaryngol Head Neck Surg; 1998 Jun; 118(6):751-61. PubMed ID: 9627232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of acoustical energy reflectance at the eardrum from measurements of pressure distribution in the human ear canal.
    Stinson MR; Shaw EA; Lawton BW
    J Acoust Soc Am; 1982 Sep; 72(3):766-73. PubMed ID: 7130535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The definition of acoustic impedance and its application to the human hearing organ].
    Pascal J
    Rev Laryngol Otol Rhinol (Bord); 1999; 120(5):301-3. PubMed ID: 10769563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of acoustic ear canal impedances: finite element simulation of measurement methods using a coupling tube.
    Schmidt S; Hudde H
    J Acoust Soc Am; 2009 Jun; 125(6):3819-27. PubMed ID: 19507964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.