These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2299046)

  • 1. Algorithms for separating the speech of interfering talkers: evaluations with voiced sentences, and normal-hearing and hearing-impaired listeners.
    Stubbs RJ; Summerfield Q
    J Acoust Soc Am; 1990 Jan; 87(1):359-72. PubMed ID: 2299046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of two voice-separation algorithms using normal-hearing and hearing-impaired listeners.
    Stubbs RJ; Summerfield Q
    J Acoust Soc Am; 1988 Oct; 84(4):1236-49. PubMed ID: 3198862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of signal-to-noise ratio, signal periodicity, and degree of hearing impairment on the performance of voice-separation algorithms.
    Stubbs RJ; Summerfield Q
    J Acoust Soc Am; 1991 Mar; 89(3):1383-93. PubMed ID: 2030226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2014 Apr; 310():36-47. PubMed ID: 24495441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strengths and Weaknesses of Procedures for Separating Simultaneous Voices.
    Summerfield Q; Stubbs RJ
    Acta Otolaryngol; 1990; 109(sup469):91-100. PubMed ID: 31905523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strengths and weaknesses of procedures for separating simultaneous voices.
    Summerfield Q; Stubbs RJ
    Acta Otolaryngol Suppl; 1990; 469():91-100. PubMed ID: 2356742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale training to increase speech intelligibility for hearing-impaired listeners in novel noises.
    Chen J; Wang Y; Yoho SE; Wang D; Healy EW
    J Acoust Soc Am; 2016 May; 139(5):2604. PubMed ID: 27250154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Word recognition for temporally and spectrally distorted materials: the effects of age and hearing loss.
    Smith SL; Pichora-Fuller MK; Wilson RH; Macdonald EN
    Ear Hear; 2012; 33(3):349-66. PubMed ID: 22343546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing Binaural Pre-processing Strategies III: Speech Intelligibility of Normal-Hearing and Hearing-Impaired Listeners.
    Völker C; Warzybok A; Ernst SM
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Villchur revisited: another look at automatic gain control simulation of recruiting hearing loss.
    Duchnowski P; Zurek PM
    J Acoust Soc Am; 1995 Dec; 98(6):3170-81. PubMed ID: 8550941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perception of temporally processed speech by listeners with hearing impairment.
    Calandruccio L; Doherty KA; Carney LH; Kikkeri HN
    Ear Hear; 2007 Aug; 28(4):512-23. PubMed ID: 17609613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of training on word-recognition performance in noise for young normal-hearing and older hearing-impaired listeners.
    Burk MH; Humes LE; Amos NE; Strauser LE
    Ear Hear; 2006 Jun; 27(3):263-78. PubMed ID: 16672795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech intelligibility enhancement by interaural magnification.
    Kollmeier B; Peissig J
    Acta Otolaryngol Suppl; 1990; 469():215-23. PubMed ID: 2356730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of slow-acting wide dynamic range compression on measures of intelligibility and ratings of speech quality in simulated-loss listeners.
    Rosengard PS; Payton KL; Braida LD
    J Speech Lang Hear Res; 2005 Jun; 48(3):702-14. PubMed ID: 16197282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binaural speech intelligibility in noise for hearing-impaired listeners.
    Bronkhorst AW; Plomp R
    J Acoust Soc Am; 1989 Oct; 86(4):1374-83. PubMed ID: 2808911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stop-consonant recognition for normal-hearing listeners and listeners with high-frequency hearing loss. II: Articulation index predictions.
    Dubno JR; Dirks DD; Schaefer AB
    J Acoust Soc Am; 1989 Jan; 85(1):355-64. PubMed ID: 2921418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Audiovisual asynchrony detection and speech intelligibility in noise with moderate to severe sensorineural hearing impairment.
    Başkent D; Bazo D
    Ear Hear; 2011; 32(5):582-92. PubMed ID: 21389856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speech quality evaluation of a sparse coding shrinkage noise reduction algorithm with normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2015 Sep; 327():175-85. PubMed ID: 26232529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individualized frequency importance functions for listeners with sensorineural hearing loss.
    Yoho SE; Bosen AK
    J Acoust Soc Am; 2019 Feb; 145(2):822. PubMed ID: 30823788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the role of spectral and envelope characteristics in the intelligibility advantage of clear speech.
    Krause JC; Braida LD
    J Acoust Soc Am; 2009 May; 125(5):3346-57. PubMed ID: 19425675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.