BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22990675)

  • 1. Pharmacological enhancement of α-glucosidase by the allosteric chaperone N-acetylcysteine.
    Porto C; Ferrara MC; Meli M; Acampora E; Avolio V; Rosa M; Cobucci-Ponzano B; Colombo G; Moracci M; Andria G; Parenti G
    Mol Ther; 2012 Dec; 20(12):2201-11. PubMed ID: 22990675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pharmacological chaperone AT2220 increases recombinant human acid α-glucosidase uptake and glycogen reduction in a mouse model of Pompe disease.
    Khanna R; Flanagan JJ; Feng J; Soska R; Frascella M; Pellegrino LJ; Lun Y; Guillen D; Lockhart DJ; Valenzano KJ
    PLoS One; 2012; 7(7):e40776. PubMed ID: 22815812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carnitine is a pharmacological allosteric chaperone of the human lysosomal
    Iacono R; Minopoli N; Ferrara MC; Tarallo A; Damiano C; Porto C; Strollo S; Roig-Zamboni V; Peluso G; Sulzenbacher G; Cobucci-Ponzano B; Parenti G; Moracci M
    J Enzyme Inhib Med Chem; 2021 Dec; 36(1):2068-2079. PubMed ID: 34565280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease.
    Yi H; Sun T; Armstrong D; Borneman S; Yang C; Austin S; Kishnani PS; Sun B
    J Mol Med (Berl); 2017 May; 95(5):513-521. PubMed ID: 28154884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pharmacological chaperone 1-deoxynojirimycin increases the activity and lysosomal trafficking of multiple mutant forms of acid alpha-glucosidase.
    Flanagan JJ; Rossi B; Tang K; Wu X; Mascioli K; Donaudy F; Tuzzi MR; Fontana F; Cubellis MV; Porto C; Benjamin E; Lockhart DJ; Valenzano KJ; Andria G; Parenti G; Do HV
    Hum Mutat; 2009 Dec; 30(12):1683-92. PubMed ID: 19862843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of human lysosomal acid α-glucosidase-a guide for the treatment of Pompe disease.
    Roig-Zamboni V; Cobucci-Ponzano B; Iacono R; Ferrara MC; Germany S; Bourne Y; Parenti G; Moracci M; Sulzenbacher G
    Nat Commun; 2017 Oct; 8(1):1111. PubMed ID: 29061980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction of oxidative stress enhances enzyme replacement therapy in Pompe disease.
    Tarallo A; Damiano C; Strollo S; Minopoli N; Indrieri A; Polishchuk E; Zappa F; Nusco E; Fecarotta S; Porto C; Coletta M; Iacono R; Moracci M; Polishchuk R; Medina DL; Imbimbo P; Monti DM; De Matteis MA; Parenti G
    EMBO Mol Med; 2021 Nov; 13(11):e14434. PubMed ID: 34606154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of a novel noniminosugar acid α glucosidase chaperone series.
    Xiao J; Westbroek W; Motabar O; Lea WA; Hu X; Velayati A; Zheng W; Southall N; Gustafson AM; Goldin E; Sidransky E; Liu K; Simeonov A; Tamargo RJ; Ribes A; Matalonga L; Ferrer M; Marugan JJ
    J Med Chem; 2012 Sep; 55(17):7546-59. PubMed ID: 22834902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction of glycogen storage disease type II by enzyme replacement with a recombinant human acid maltase produced by over-expression in a CHO-DHFR(neg) cell line.
    Martiniuk F; Chen A; Donnabella V; Arvanitopoulos E; Slonim AE; Raben N; Plotz P; Rom WN
    Biochem Biophys Res Commun; 2000 Oct; 276(3):917-23. PubMed ID: 11027569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient therapy for refractory Pompe disease by mannose 6-phosphate analogue grafting on acid α-glucosidase.
    Basile I; Da Silva A; El Cheikh K; Godefroy A; Daurat M; Harmois A; Perez M; Caillaud C; Charbonné HV; Pau B; Gary-Bobo M; Morère A; Garcia M; Maynadier M
    J Control Release; 2018 Jan; 269():15-23. PubMed ID: 29108866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and pharmacological characterization of different recombinant acid alpha-glucosidase preparations evaluated for the treatment of Pompe disease.
    McVie-Wylie AJ; Lee KL; Qiu H; Jin X; Do H; Gotschall R; Thurberg BL; Rogers C; Raben N; O'Callaghan M; Canfield W; Andrews L; McPherson JM; Mattaliano RJ
    Mol Genet Metab; 2008 Aug; 94(4):448-455. PubMed ID: 18538603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbohydrate-remodelled acid alpha-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice.
    Zhu Y; Li X; McVie-Wylie A; Jiang C; Thurberg BL; Raben N; Mattaliano RJ; Cheng SH
    Biochem J; 2005 Aug; 389(Pt 3):619-28. PubMed ID: 15839836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological Chaperone Therapy for Pompe Disease.
    Borie-Guichot M; Tran ML; Génisson Y; Ballereau S; Dehoux C
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice.
    Su J; Sherman A; Doerfler PA; Byrne BJ; Herzog RW; Daniell H
    Plant Biotechnol J; 2015 Oct; 13(8):1023-32. PubMed ID: 26053072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pompe disease: from new views on pathophysiology to innovative therapeutic strategies.
    Parenti G; Andria G
    Curr Pharm Biotechnol; 2011 Jun; 12(6):902-15. PubMed ID: 21235442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A beta-blocker, propranolol, decreases the efficacy from enzyme replacement therapy in Pompe disease.
    Han SO; Pope R; Li S; Kishnani PS; Steet R; Koeberl DD
    Mol Genet Metab; 2016 Feb; 117(2):114-9. PubMed ID: 26454691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatic expression of GAA results in enhanced enzyme bioavailability in mice and non-human primates.
    Costa-Verdera H; Collaud F; Riling CR; Sellier P; Nordin JML; Preston GM; Cagin U; Fabregue J; Barral S; Moya-Nilges M; Krijnse-Locker J; van Wittenberghe L; Daniele N; Gjata B; Cosette J; Abad C; Simon-Sola M; Charles S; Li M; Crosariol M; Antrilli T; Quinn WJ; Gross DA; Boyer O; Anguela XM; Armour SM; Colella P; Ronzitti G; Mingozzi F
    Nat Commun; 2021 Nov; 12(1):6393. PubMed ID: 34737297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts.
    Porto C; Cardone M; Fontana F; Rossi B; Tuzzi MR; Tarallo A; Barone MV; Andria G; Parenti G
    Mol Ther; 2009 Jun; 17(6):964-71. PubMed ID: 19293774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggressive immunotherapy combined with bortezomib and rituximab for membranous nephropathy associated with enzyme replacement therapy in Pompe disease.
    Sasaki K; Uchimura T; Inaba A; Otani M; Hanakawa J; Ito S
    Pediatr Nephrol; 2023 Mar; 38(3):921-925. PubMed ID: 35864224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic Efficacy from Gene Therapy with Coreceptor Blockade and a β2-Agonist in Murine Pompe Disease.
    Han SO; Li S; Bird A; Koeberl D
    Hum Gene Ther; 2015 Nov; 26(11):743-50. PubMed ID: 26417913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.