BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 22990675)

  • 21. The pharmacological chaperone AT2220 increases the specific activity and lysosomal delivery of mutant acid alpha-glucosidase, and promotes glycogen reduction in a transgenic mouse model of Pompe disease.
    Khanna R; Powe AC; Lun Y; Soska R; Feng J; Dhulipala R; Frascella M; Garcia A; Pellegrino LJ; Xu S; Brignol N; Toth MJ; Do HV; Lockhart DJ; Wustman BA; Valenzano KJ
    PLoS One; 2014; 9(7):e102092. PubMed ID: 25036864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new assay for fast, reliable CRIM status determination in infantile-onset Pompe disease.
    Wang Z; Okamoto P; Keutzer J
    Mol Genet Metab; 2014 Feb; 111(2):92-100. PubMed ID: 24044919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systematic structure-activity study on potential chaperone lead compounds for acid α-glucosidase.
    Bruckmann C; Repo H; Kuokkanen E; Xhaard H; Heikinheimo P
    ChemMedChem; 2012 Nov; 7(11):1943-53. PubMed ID: 22969039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reveglucosidase alfa (BMN 701), an IGF2-Tagged rhAcid α-Glucosidase, Improves Respiratory Functional Parameters in a Murine Model of Pompe Disease.
    Peng J; Dalton J; Butt M; Tracy K; Kennedy D; Haroldsen P; Cahayag R; Zoog S; O'Neill CA; Tsuruda LS
    J Pharmacol Exp Ther; 2017 Feb; 360(2):313-323. PubMed ID: 27856936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial.
    Amalfitano A; Bengur AR; Morse RP; Majure JM; Case LE; Veerling DL; Mackey J; Kishnani P; Smith W; McVie-Wylie A; Sullivan JA; Hoganson GE; Phillips JA; Schaefer GB; Charrow J; Ware RE; Bossen EH; Chen YT
    Genet Med; 2001; 3(2):132-8. PubMed ID: 11286229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 5-
    Kato A; Nakagome I; Kanekiyo U; Lu TT; Li YX; Yoshimura K; Kishida M; Shinzawa K; Yoshida T; Tanaka N; Jia YM; Nash RJ; Fleet GWJ; Yu CY
    J Med Chem; 2022 Feb; 65(3):2329-2341. PubMed ID: 35072486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved efficacy of a next-generation ERT in murine Pompe disease.
    Xu S; Lun Y; Frascella M; Garcia A; Soska R; Nair A; Ponery AS; Schilling A; Feng J; Tuske S; Valle MCD; Martina JA; Ralston E; Gotschall R; Valenzano KJ; Puertollano R; Do HV; Raben N; Khanna R
    JCI Insight; 2019 Mar; 4(5):. PubMed ID: 30843882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immune Tolerance-Adjusted Personalized Immunogenicity Prediction for Pompe Disease.
    De Groot AS; Desai AK; Lelias S; Miah SMS; Terry FE; Khan S; Li C; Yi JS; Ardito M; Martin WD; Kishnani PS
    Front Immunol; 2021; 12():636731. PubMed ID: 34220802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pharmacological enhancement of mutated alpha-glucosidase activity in fibroblasts from patients with Pompe disease.
    Parenti G; Zuppaldi A; Gabriela Pittis M; Rosaria Tuzzi M; Annunziata I; Meroni G; Porto C; Donaudy F; Rossi B; Rossi M; Filocamo M; Donati A; Bembi B; Ballabio A; Andria G
    Mol Ther; 2007 Mar; 15(3):508-14. PubMed ID: 17213836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene Therapy for Pompe Disease: The Time is now.
    Colella P; Mingozzi F
    Hum Gene Ther; 2019 Oct; 30(10):1245-1262. PubMed ID: 31298581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Teaching tolerance: New approaches to enzyme replacement therapy for Pompe disease.
    Cousens LP; Mingozzi F; van der Marel S; Su Y; Garman R; Ferreira V; Martin W; Scott DW; De Groot AS
    Hum Vaccin Immunother; 2012 Oct; 8(10):1459-64. PubMed ID: 23095864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of recombinant human acid α-glucosidase with high-mannose glycans in gnt1 rice for the treatment of Pompe disease.
    Jung JW; Huy NX; Kim HB; Kim NS; Van Giap D; Yang MS
    J Biotechnol; 2017 May; 249():42-50. PubMed ID: 28363873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hyaluronidase increases the biodistribution of acid alpha-1,4 glucosidase in the muscle of Pompe disease mice: an approach to enhance the efficacy of enzyme replacement therapy.
    Matalon R; Surendran S; Campbell GA; Michals-Matalon K; Tyring SK; Grady J; Cheng S; Kaye E
    Biochem Biophys Res Commun; 2006 Nov; 350(3):783-7. PubMed ID: 17027913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recombinant human acid alpha-glucosidase corrects acid alpha-glucosidase-deficient human fibroblasts, quail fibroblasts, and quail myoblasts.
    Yang HW; Kikuchi T; Hagiwara Y; Mizutani M; Chen YT; Van Hove JL
    Pediatr Res; 1998 Mar; 43(3):374-80. PubMed ID: 9505277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adenovirus-mediated transfer of the acid alpha-glucosidase gene into fibroblasts, myoblasts and myotubes from patients with glycogen storage disease type II leads to high level expression of enzyme and corrects glycogen accumulation.
    Nicolino MP; Puech JP; Kremer EJ; Reuser AJ; Mbebi C; Verdière-Sahuqué M; Kahn A; Poenaru L
    Hum Mol Genet; 1998 Oct; 7(11):1695-702. PubMed ID: 9736771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immune responses and hypercoagulation in ERT for Pompe disease are mutation and rhGAA dose dependent.
    Nayak S; Doerfler PA; Porvasnik SL; Cloutier DD; Khanna R; Valenzano KJ; Herzog RW; Byrne BJ
    PLoS One; 2014; 9(6):e98336. PubMed ID: 24897114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endolysosomal N-glycan processing is critical to attain the most active form of the enzyme acid alpha-glucosidase.
    Selvan N; Mehta N; Venkateswaran S; Brignol N; Graziano M; Sheikh MO; McAnany Y; Hung F; Madrid M; Krampetz R; Siano N; Mehta A; Brudvig J; Gotschall R; Weimer JM; Do HV
    J Biol Chem; 2021; 296():100769. PubMed ID: 33971197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteasome inhibitors improve the function of mutant lysosomal α-glucosidase in fibroblasts from Pompe disease patient carrying c.546G>T mutation.
    Shimada Y; Nishida H; Nishiyama Y; Kobayashi H; Higuchi T; Eto Y; Ida H; Ohashi T
    Biochem Biophys Res Commun; 2011 Nov; 415(2):274-8. PubMed ID: 22027144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study on the safety and efficacy of reveglucosidase alfa in patients with late-onset Pompe disease.
    Byrne BJ; Geberhiwot T; Barshop BA; Barohn R; Hughes D; Bratkovic D; Desnuelle C; Laforet P; Mengel E; Roberts M; Haroldsen P; Reilley K; Jayaram K; Yang K; Walsh L;
    Orphanet J Rare Dis; 2017 Aug; 12(1):144. PubMed ID: 28838325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glycosylation-independent lysosomal targeting of acid α-glucosidase enhances muscle glycogen clearance in pompe mice.
    Maga JA; Zhou J; Kambampati R; Peng S; Wang X; Bohnsack RN; Thomm A; Golata S; Tom P; Dahms NM; Byrne BJ; LeBowitz JH
    J Biol Chem; 2013 Jan; 288(3):1428-38. PubMed ID: 23188827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.