BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 22990765)

  • 21. Combining functional and topological properties to identify core modules in protein interaction networks.
    Lubovac Z; Gamalielsson J; Olsson B
    Proteins; 2006 Sep; 64(4):948-59. PubMed ID: 16794996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. L-GRAAL: Lagrangian graphlet-based network aligner.
    Malod-Dognin N; Pržulj N
    Bioinformatics; 2015 Jul; 31(13):2182-9. PubMed ID: 25725498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of protein domain fusions in human protein interaction networks prediction: application to the human kinetochore model.
    Morilla I; Lees JG; Reid AJ; Orengo C; Ranea JA
    N Biotechnol; 2010 Dec; 27(6):755-65. PubMed ID: 20851221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An integrative approach to modeling biological networks.
    Memisevic V; Milenkovic T; Przulj N
    J Integr Bioinform; 2010 Mar; 7(3):. PubMed ID: 20375453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of protein complexes from multi-relationship protein interaction networks.
    Li X; Wang J; Zhao B; Wu FX; Pan Y
    Hum Genomics; 2016 Jul; 10 Suppl 2(Suppl 2):17. PubMed ID: 27461193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Globally predicting protein functions based on co-expressed protein-protein interaction networks and ontology taxonomy similarities.
    Zhu M; Gao L; Guo Z; Li Y; Wang D; Wang J; Wang C
    Gene; 2007 Apr; 391(1-2):113-9. PubMed ID: 17289301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein complex prediction with RNSC.
    King AD; Pržulj N; Jurisica I
    Methods Mol Biol; 2012; 804():297-312. PubMed ID: 22144160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. AVID: an integrative framework for discovering functional relationships among proteins.
    Jiang T; Keating AE
    BMC Bioinformatics; 2005 Jun; 6():136. PubMed ID: 15929793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovering reliable protein interactions from high-throughput experimental data using network topology.
    Chen J; Hsu W; Lee ML; Ng SK
    Artif Intell Med; 2005; 35(1-2):37-47. PubMed ID: 16055319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional topology in a network of protein interactions.
    Przulj N; Wigle DA; Jurisica I
    Bioinformatics; 2004 Feb; 20(3):340-8. PubMed ID: 14960460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrating experimental and literature protein-protein interaction data for protein complex prediction.
    Zhang Y; Lin H; Yang Z; Wang J
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S4. PubMed ID: 25708571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Utilizing shared interacting domain patterns and Gene Ontology information to improve protein-protein interaction prediction.
    Roslan R; Othman RM; Shah ZA; Kasim S; Asmuni H; Taliba J; Hassan R; Zakaria Z
    Comput Biol Med; 2010 Jun; 40(6):555-64. PubMed ID: 20417930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.
    Cao B; Luo J; Liang C; Wang S; Song D
    Comput Biol Chem; 2015 Oct; 58():173-81. PubMed ID: 26298638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integration of genomic data for inferring protein complexes from global protein-protein interaction networks.
    Zheng H; Wang H; Glass DH
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):5-16. PubMed ID: 18270078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of overlapping protein complexes in gene expression, phenotype and pathways of Saccharomyces cerevisiae using Prorank based Fuzzy algorithm.
    Manikandan P; Ramyachitra D; Banupriya D
    Gene; 2016 Apr; 580(2):144-158. PubMed ID: 26809099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploiting multi-layered information to iteratively predict protein functions.
    Zhu W; Hou J; Chen YP
    Math Biosci; 2012 Apr; 236(2):108-16. PubMed ID: 22391459
    [TBL] [Abstract][Full Text] [Related]  

  • 37. k-Partite cliques of protein interactions: A novel subgraph topology for functional coherence analysis on PPI networks.
    Liu Q; Chen YP; Li J
    J Theor Biol; 2014 Jan; 340():146-54. PubMed ID: 24056214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods.
    Dimitrakopoulos C; Theofilatos K; Pegkas A; Likothanassis S; Mavroudi S
    Artif Intell Med; 2016 Jul; 71():62-9. PubMed ID: 27506132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning the structure of protein-protein interaction networks.
    Kuchaiev O; Przulj N
    Pac Symp Biocomput; 2009; ():39-50. PubMed ID: 19209694
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolutionary Graph Clustering for Protein Complex Identification.
    He T; Chan KCC
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):892-904. PubMed ID: 28029628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.