These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22990783)

  • 41. Melatonin and IP3-induced Ca2+ release from intracellular stores in the malaria parasite Plasmodium falciparum within infected red blood cells.
    Alves E; Bartlett PJ; Garcia CR; Thomas AP
    J Biol Chem; 2011 Feb; 286(7):5905-12. PubMed ID: 21149448
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Organic osmolyte channels in malaria-infected erythrocytes.
    Huber SM; Lang C; Lang F; Duranton C
    Biochem Biophys Res Commun; 2008 Nov; 376(3):514-8. PubMed ID: 18804454
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Parasite and Host Erythrocyte Kinomics of Plasmodium Infection.
    Adderley J; Williamson T; Doerig C
    Trends Parasitol; 2021 Jun; 37(6):508-524. PubMed ID: 33593681
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolomic changes in vertebrate host during malaria disease progression.
    Ghosh S; Pathak S; Sonawat HM; Sharma S; Sengupta A
    Cytokine; 2018 Dec; 112():32-43. PubMed ID: 30057363
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel Plasmodium falciparum Maurer's clefts protein families implicated in the release of infectious merozoites.
    Mbengue A; Audiger N; Vialla E; Dubremetz JF; Braun-Breton C
    Mol Microbiol; 2013 Apr; 88(2):425-42. PubMed ID: 23517413
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A metabolomic analytical approach permits identification of urinary biomarkers for Plasmodium falciparum infection: a case-control study.
    Abdelrazig S; Ortori CA; Davey G; Deressa W; Mulleta D; Barrett DA; Amberbir A; Fogarty AW
    Malar J; 2017 May; 16(1):229. PubMed ID: 28558710
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand.
    Tham WH; Wilson DW; Lopaticki S; Schmidt CQ; Tetteh-Quarcoo PB; Barlow PN; Richard D; Corbin JE; Beeson JG; Cowman AF
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17327-32. PubMed ID: 20855594
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance.
    LaMonte G; Philip N; Reardon J; Lacsina JR; Majoros W; Chapman L; Thornburg CD; Telen MJ; Ohler U; Nicchitta CV; Haystead T; Chi JT
    Cell Host Microbe; 2012 Aug; 12(2):187-99. PubMed ID: 22901539
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes.
    Howard RJ; Uni S; Aikawa M; Aley SB; Leech JH; Lew AM; Wellems TE; Rener J; Taylor DW
    J Cell Biol; 1986 Oct; 103(4):1269-77. PubMed ID: 3533951
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antimalarial action of hydrophilic drugs: involvement of aqueous access routes to intracellular parasites.
    Loyevsky M; Cabantchik ZI
    Mol Pharmacol; 1994 Mar; 45(3):446-52. PubMed ID: 8145731
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The long and winding road: protein trafficking mechanisms in the Plasmodium falciparum infected erythrocyte.
    Lingelbach K; Przyborski JM
    Mol Biochem Parasitol; 2006 May; 147(1):1-8. PubMed ID: 16540187
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biosynthesis, export and processing of a 45 kDa protein detected in membrane clefts of erythrocytes infected with Plasmodium falciparum.
    Das A; Elmendorf HG; Li WI; Haldar K
    Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):487-96. PubMed ID: 8093001
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the erythrocyte GTPase Rac1 in relation to Plasmodium falciparum invasion.
    Paone S; D'Alessandro S; Parapini S; Celani F; Tirelli V; Pourshaban M; Olivieri A
    Sci Rep; 2020 Dec; 10(1):22054. PubMed ID: 33328606
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Human erythrocyte remodelling during Plasmodium falciparum malaria parasite growth and egress.
    Mbengue A; Yam XY; Braun-Breton C
    Br J Haematol; 2012 Apr; 157(2):171-9. PubMed ID: 22313394
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New Export Pathway in Plasmodium falciparum-Infected Erythrocytes: Role of the Parasite Group II Chaperonin, PfTRiC.
    Mbengue A; Vialla E; Berry L; Fall G; Audiger N; Demettre-Verceil E; Boteller D; Braun-Breton C
    Traffic; 2015 May; 16(5):461-75. PubMed ID: 25615740
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Erythrocyte invasion receptors for Plasmodium falciparum: new and old.
    Satchwell TJ
    Transfus Med; 2016 Apr; 26(2):77-88. PubMed ID: 26862042
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ticket to ride: export of proteins to the Plasmodium falciparum-infected erythrocyte.
    Przyborski JM; Nyboer B; Lanzer M
    Mol Microbiol; 2016 Jul; 101(1):1-11. PubMed ID: 26996123
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanism of growth inhibition of intraerythrocytic stages of Plasmodium falciparum by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR).
    Bulusu V; Thakur SS; Venkatachala R; Balaram H
    Mol Biochem Parasitol; 2011 May; 177(1):1-11. PubMed ID: 21251933
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways.
    Allman EL; Painter HJ; Samra J; Carrasquilla M; LlinĂ¡s M
    Antimicrob Agents Chemother; 2016 Nov; 60(11):6635-6649. PubMed ID: 27572391
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Copper pathways in Plasmodium falciparum infected erythrocytes indicate an efflux role for the copper P-ATPase.
    Rasoloson D; Shi L; Chong CR; Kafsack BF; Sullivan DJ
    Biochem J; 2004 Aug; 381(Pt 3):803-11. PubMed ID: 15125686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.