These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22990864)

  • 21. Tight-binding description of Landau levels of graphite in tilted magnetic fields.
    Goncharuk NA; Smrčka L
    J Phys Condens Matter; 2012 May; 24(18):185503. PubMed ID: 22481533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The half-filled Landau level: The case for Dirac composite fermions.
    Geraedts SD; Zaletel MP; Mong RS; Metlitski MA; Vishwanath A; Motrunich OI
    Science; 2016 Apr; 352(6282):197-201. PubMed ID: 27124453
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum Hall effect of massless dirac fermions in a vanishing magnetic field.
    Nomura K; Ryu S; Koshino M; Mudry C; Furusaki A
    Phys Rev Lett; 2008 Jun; 100(24):246806. PubMed ID: 18643612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Landau Levels in Strained Optical Lattices.
    Tian B; Endres M; Pekker D
    Phys Rev Lett; 2015 Dec; 115(23):236803. PubMed ID: 26684134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Majorana fermions from Landau quantization in a superconductor and topological-insulator hybrid structure.
    Tiwari RP; Zülicke U; Bruder C
    Phys Rev Lett; 2013 May; 110(18):186805. PubMed ID: 23683234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Planar Dirac electrons in magnetic quantum dots.
    Yang N; Zhu JL
    J Phys Condens Matter; 2012 May; 24(21):215303. PubMed ID: 22543306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-layer behavior and its breakdown in twisted graphene layers.
    Luican A; Li G; Reina A; Kong J; Nair RR; Novoselov KS; Geim AK; Andrei EY
    Phys Rev Lett; 2011 Mar; 106(12):126802. PubMed ID: 21517338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics of level-spacing statistics in chaotic graphene billiards.
    Huang L; Lai YC; Grebogi C
    Chaos; 2011 Mar; 21(1):013102. PubMed ID: 21456816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gate-tuned normal and superconducting transport at the surface of a topological insulator.
    Sacépé B; Oostinga JB; Li J; Ubaldini A; Couto NJ; Giannini E; Morpurgo AF
    Nat Commun; 2011 Dec; 2():575. PubMed ID: 22146394
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Semirelativity in semiconductors: a review.
    Zawadzki W
    J Phys Condens Matter; 2017 Sep; 29(37):373004. PubMed ID: 28608783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Landau levels and quantum Hall effect in graphene superlattices.
    Park CH; Son YW; Yang L; Cohen ML; Louie SG
    Phys Rev Lett; 2009 Jul; 103(4):046808. PubMed ID: 19659386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Valley Polarization and Inversion in Strained Graphene via Pseudo-Landau Levels, Valley Splitting of Real Landau Levels, and Confined States.
    Li SY; Su Y; Ren YN; He L
    Phys Rev Lett; 2020 Mar; 124(10):106802. PubMed ID: 32216392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chiral Landau levels in Weyl semimetal NbAs with multiple topological carriers.
    Yuan X; Yan Z; Song C; Zhang M; Li Z; Zhang C; Liu Y; Wang W; Zhao M; Lin Z; Xie T; Ludwig J; Jiang Y; Zhang X; Shang C; Ye Z; Wang J; Chen F; Xia Z; Smirnov D; Chen X; Wang Z; Yan H; Xiu F
    Nat Commun; 2018 May; 9(1):1854. PubMed ID: 29748535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental study of organic zero-gap conductor α-(BEDT-TTF)
    Tajima N; Kajita K
    Sci Technol Adv Mater; 2009 Apr; 10(2):024308. PubMed ID: 27877281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lattice-induced double-valley degeneracy lifting in graphene by a magnetic field.
    Luk'yanchuk IA; Bratkovsky AM
    Phys Rev Lett; 2008 May; 100(17):176404. PubMed ID: 18518315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of the zero-mode landau level on interlayer magnetoresistance in multilayer massless Dirac fermion systems.
    Tajima N; Sugawara S; Kato R; Nishio Y; Kajita K
    Phys Rev Lett; 2009 May; 102(17):176403. PubMed ID: 19518803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic field barriers in graphene: an analytically solvable model.
    Milpas E; Torres M; Murguía G
    J Phys Condens Matter; 2011 Jun; 23(24):245304. PubMed ID: 21628785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for strain-induced local conductance modulations in single-layer graphene on SiO2.
    Teague ML; Lai AP; Velasco J; Hughes CR; Beyer AD; Bockrath MW; Lau CN; Yeh NC
    Nano Lett; 2009 Jul; 9(7):2542-6. PubMed ID: 19534500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reversal of Klein reflection by magnetic barriers in bilayer graphene.
    Agrawal Garg N; Grover S; Ghosh S; Sharma M
    J Phys Condens Matter; 2012 May; 24(17):175003. PubMed ID: 22481035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Observing the quantization of zero mass carriers in graphene.
    Miller DL; Kubista KD; Rutter GM; Ruan M; de Heer WA; First PN; Stroscio JA
    Science; 2009 May; 324(5929):924-7. PubMed ID: 19443780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.