BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 22990944)

  • 1. Persistence, bioaccumulation, and toxicity of halogen-free flame retardants.
    Waaijers SL; Kong D; Hendriks HS; de Wit CA; Cousins IT; Westerink RH; Leonards PE; Kraak MH; Admiraal W; de Voogt P; Parsons JR
    Rev Environ Contam Toxicol; 2013; 222():1-71. PubMed ID: 22990944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity of new generation flame retardants to Daphnia magna.
    Waaijers SL; Hartmann J; Soeter AM; Helmus R; Kools SA; de Voogt P; Admiraal W; Parsons JR; Kraak MH
    Sci Total Environ; 2013 Oct; 463-464():1042-8. PubMed ID: 23886749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of human α4β2 nicotinic acetylcholine receptors by brominated and halogen-free flame retardants as a measure for in vitro neurotoxicity.
    Hendriks HS; van Kleef RG; Westerink RH
    Toxicol Lett; 2012 Sep; 213(2):266-74. PubMed ID: 22750351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the in vitro cyto- and neurotoxicity of brominated and halogen-free flame retardants: prioritization in search for safe(r) alternatives.
    Hendriks HS; Meijer M; Muilwijk M; van den Berg M; Westerink RH
    Arch Toxicol; 2014 Apr; 88(4):857-69. PubMed ID: 24395120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis.
    van der Veen I; de Boer J
    Chemosphere; 2012 Aug; 88(10):1119-53. PubMed ID: 22537891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Daphnid life cycle responses to new generation flame retardants.
    Waaijers SL; Bleyenberg TE; Dits A; Schoorl M; Schütt J; Kools SA; de Voogt P; Admiraal W; Parsons JR; Kraak MH
    Environ Sci Technol; 2013 Dec; 47(23):13798-803. PubMed ID: 24180581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of neonatal exposure to the flame retardant tetrabromobisphenol-A, aluminum diethylphosphinate or zinc stannate on long-term potentiation and synaptic protein levels in mice.
    Hendriks HS; Koolen LA; Dingemans MM; Viberg H; Lee I; Leonards PE; Ramakers GM; Westerink RH
    Arch Toxicol; 2015 Dec; 89(12):2345-54. PubMed ID: 25253649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotoxicity and risk assessment of brominated and alternative flame retardants.
    Hendriks HS; Westerink RH
    Neurotoxicol Teratol; 2015; 52(Pt B):248-69. PubMed ID: 26363216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the persistence, bioaccumulation potential and toxicity of brominated flame retardants: data availability and quality for 36 alternative brominated flame retardants.
    Stieger G; Scheringer M; Ng CA; Hungerbühler K
    Chemosphere; 2014 Dec; 116():118-23. PubMed ID: 24656972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical alternatives assessment of different flame retardants - A case study including multi-walled carbon nanotubes as synergist.
    Aschberger K; Campia I; Pesudo LQ; Radovnikovic A; Reina V
    Environ Int; 2017 Apr; 101():27-45. PubMed ID: 28161204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical-chemical properties and evaluative fate modelling of 'emerging' and 'novel' brominated and organophosphorus flame retardants in the indoor and outdoor environment.
    Liagkouridis I; Cousins AP; Cousins IT
    Sci Total Environ; 2015 Aug; 524-525():416-26. PubMed ID: 25933174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxic effects of brominated flame retardants in man and in wildlife.
    Darnerud PO
    Environ Int; 2003 Sep; 29(6):841-53. PubMed ID: 12850100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halogenated flame retardants: do the fire safety benefits justify the risks?
    Shaw SD; Blum A; Weber R; Kannan K; Rich D; Lucas D; Koshland CP; Dobraca D; Hanson S; Birnbaum LS
    Rev Environ Health; 2010; 25(4):261-305. PubMed ID: 21268442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecotoxicity and biodegradability of new brominated flame retardants: a review.
    Ezechiáš M; Covino S; Cajthaml T
    Ecotoxicol Environ Saf; 2014 Dec; 110():153-67. PubMed ID: 25240235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Playing with fire: the global threat presented by brominated flame retardants justifies urgent substitution.
    Santillo D; Johnston P
    Environ Int; 2003 Sep; 29(6):725-34. PubMed ID: 12850092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary ecotoxicity hazard evaluation of DOPO-HQ as a potential alternative to halogenated flame retardants.
    Liu M; Yin H; Chen X; Yang J; Liang Y; Zhang J; Yang F; Deng Y; Lu S
    Chemosphere; 2018 Feb; 193():126-133. PubMed ID: 29128559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Ah receptor pathway activation by brominated flame retardants.
    Brown DJ; Van Overmeire I; Goeyens L; Denison MS; De Vito MJ; Clark GC
    Chemosphere; 2004 Jun; 55(11):1509-18. PubMed ID: 15099731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mineralisation and primary biodegradation of aromatic organophosphorus flame retardants in activated sludge.
    Jurgens SS; Helmus R; Waaijers SL; Uittenbogaard D; Dunnebier D; Vleugel M; Kraak MH; de Voogt P; Parsons JR
    Chemosphere; 2014 Sep; 111():238-42. PubMed ID: 24997924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are brominated flame retardants endocrine disruptors?
    Legler J; Brouwer A
    Environ Int; 2003 Sep; 29(6):879-85. PubMed ID: 12850103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.