BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22991240)

  • 1. Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption.
    Martínez VS; Dietmair S; Quek LE; Hodson MP; Gray P; Nielsen LK
    Biotechnol Bioeng; 2013 Feb; 110(2):660-6. PubMed ID: 22991240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process.
    Luo J; Vijayasankaran N; Autsen J; Santuray R; Hudson T; Amanullah A; Li F
    Biotechnol Bioeng; 2012 Jan; 109(1):146-56. PubMed ID: 21964570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases.
    Zhou M; Crawford Y; Ng D; Tung J; Pynn AF; Meier A; Yuk IH; Vijayasankaran N; Leach K; Joly J; Snedecor B; Shen A
    J Biotechnol; 2011 Apr; 153(1-2):27-34. PubMed ID: 21392546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into pH-induced metabolic switch by flux balance analysis.
    Ivarsson M; Noh H; Morbidelli M; Soos M
    Biotechnol Prog; 2015; 31(2):347-57. PubMed ID: 25906421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the metabolism of an inducible mammalian expression system using extracellular isotopomer analysis.
    Sheikholeslami Z; Jolicoeur M; Henry O
    J Biotechnol; 2013 Apr; 164(4):469-78. PubMed ID: 23403402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic analysis of antibody producing CHO cells in fed-batch production.
    Dean J; Reddy P
    Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Considerations on the lactate consumption by CHO cells in the presence of galactose.
    Altamirano C; Illanes A; Becerra S; Cairó JJ; Gòdia F
    J Biotechnol; 2006 Oct; 125(4):547-56. PubMed ID: 16822573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis.
    Nargund S; Qiu J; Goudar CT
    Biotechnol Prog; 2015; 31(5):1179-86. PubMed ID: 26097228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism.
    Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S
    Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplicity of steady states in glycolysis and shift of metabolic state in cultured mammalian cells.
    Mulukutla BC; Yongky A; Grimm S; Daoutidis P; Hu WS
    PLoS One; 2015; 10(3):e0121561. PubMed ID: 25806512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring Chinese hamster ovary cell culture by the analysis of glucose and lactate metabolism.
    Tsao YS; Cardoso AG; Condon RG; Voloch M; Lio P; Lagos JC; Kearns BG; Liu Z
    J Biotechnol; 2005 Aug; 118(3):316-27. PubMed ID: 16019100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactate metabolism shift in CHO cell culture: the role of mitochondrial oxidative activity.
    Zagari F; Jordan M; Stettler M; Broly H; Wurm FM
    N Biotechnol; 2013 Jan; 30(2):238-45. PubMed ID: 22683938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinetic-metabolic model based on cell energetic state: study of CHO cell behavior under Na-butyrate stimulation.
    Ghorbaniaghdam A; Henry O; Jolicoeur M
    Bioprocess Biosyst Eng; 2013 Apr; 36(4):469-87. PubMed ID: 22976819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinatorial engineering of ldh-a and bcl-2 for reducing lactate production and improving cell growth in dihydrofolate reductase-deficient Chinese hamster ovary cells.
    Jeon MK; Yu DY; Lee GM
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):779-90. PubMed ID: 21792592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doxorubicin increases oxidative metabolism in HL-1 cardiomyocytes as shown by 13C metabolic flux analysis.
    Strigun A; Wahrheit J; Niklas J; Heinzle E; Noor F
    Toxicol Sci; 2012 Feb; 125(2):595-606. PubMed ID: 22048646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic flux analysis of CHO cell metabolism in the late non-growth phase.
    Sengupta N; Rose ST; Morgan JA
    Biotechnol Bioeng; 2011 Jan; 108(1):82-92. PubMed ID: 20672285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of hypoxia and an acidic environment on the metabolism and viability of cultured cells: potential implications for cell death in tumors.
    Rotin D; Robinson B; Tannock IF
    Cancer Res; 1986 Jun; 46(6):2821-6. PubMed ID: 3698008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of antibody production rate with glucose and lactate metabolism in Chinese hamster ovary cells.
    Chen F; Ye Z; Zhao L; Liu X; Fan L; Tan WS
    Biotechnol Lett; 2012 Mar; 34(3):425-32. PubMed ID: 22105551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12: verification and complementation of hypotheses derived from transcriptomics.
    Wierckx N; Ruijssenaars HJ; de Winde JH; Schmid A; Blank LM
    J Biotechnol; 2009 Aug; 143(2):124-9. PubMed ID: 19560494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining mechanistic and data-driven approaches to gain process knowledge on the control of the metabolic shift to lactate uptake in a fed-batch CHO process.
    Zalai D; Koczka K; Párta L; Wechselberger P; Klein T; Herwig C
    Biotechnol Prog; 2015; 31(6):1657-68. PubMed ID: 26439213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.