BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22991240)

  • 21. Comparison of metabolic flux distributions for MDCK cell growth in glutamine- and pyruvate-containing media.
    Sidorenko Y; Wahl A; Dauner M; Genzel Y; Reichl U
    Biotechnol Prog; 2008; 24(2):311-20. PubMed ID: 18215054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A detailed metabolic flux analysis of an underdetermined network of CHO cells.
    Zamorano F; Wouwer AV; Bastin G
    J Biotechnol; 2010 Dec; 150(4):497-508. PubMed ID: 20869402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of anti-apoptosis genes alters lactate metabolism of Chinese Hamster Ovary cells in culture.
    Dorai H; Kyung YS; Ellis D; Kinney C; Lin C; Jan D; Moore G; Betenbaugh MJ
    Biotechnol Bioeng; 2009 Jun; 103(3):592-608. PubMed ID: 19241388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Error propagation from prime variables into specific rates and metabolic fluxes for mammalian cells in perfusion culture.
    Goudar CT; Biener R; Konstantinov KB; Piret JM
    Biotechnol Prog; 2009; 25(4):986-98. PubMed ID: 19551875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect.
    Damiani C; Colombo R; Gaglio D; Mastroianni F; Pescini D; Westerhoff HV; Mauri G; Vanoni M; Alberghina L
    PLoS Comput Biol; 2017 Sep; 13(9):e1005758. PubMed ID: 28957320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic profiling by 13C-NMR spectroscopy: [1,2-13C2]glucose reveals a heterogeneous metabolism in human leukemia T cells.
    Miccheli A; Tomassini A; Puccetti C; Valerio M; Peluso G; Tuccillo F; Calvani M; Manetti C; Conti F
    Biochimie; 2006 May; 88(5):437-48. PubMed ID: 16359766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards dynamic metabolic flux analysis in CHO cell cultures.
    Ahn WS; Antoniewicz MR
    Biotechnol J; 2012 Jan; 7(1):61-74. PubMed ID: 22102428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms driving the lactate switch in Chinese hamster ovary cells.
    Hartley F; Walker T; Chung V; Morten K
    Biotechnol Bioeng; 2018 Aug; 115(8):1890-1903. PubMed ID: 29603726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122.
    Gonzalez R; Andrews BA; Molitor J; Asenjo JA
    Biotechnol Bioeng; 2003 Apr; 82(2):152-69. PubMed ID: 12584757
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substrate utilization for lactate and energy production by heat-shocked L929 cells.
    Lanks KW; Hitti IF; Chin NW
    J Cell Physiol; 1986 Jun; 127(3):451-6. PubMed ID: 3086328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats.
    Winkler BS; Arnold MJ; Brassell MA; Sliter DR
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Feeding lactate for CHO cell culture processes: impact on culture metabolism and performance.
    Li J; Wong CL; Vijayasankaran N; Hudson T; Amanullah A
    Biotechnol Bioeng; 2012 May; 109(5):1173-86. PubMed ID: 22124879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Apoptosis, necrosis and autophagy are influenced by metabolic energy sources in cultured rat spermatocytes.
    Bustamante-Marín X; Quiroga C; Lavandero S; Reyes JG; Moreno RD
    Apoptosis; 2012 Jun; 17(6):539-50. PubMed ID: 22484449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Down-regulation of lactate dehydrogenase-A by siRNAs for reduced lactic acid formation of Chinese hamster ovary cells producing thrombopoietin.
    Kim SH; Lee GM
    Appl Microbiol Biotechnol; 2007 Feb; 74(1):152-9. PubMed ID: 17086415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzyme capacity-based genome scale modelling of CHO cells.
    Yeo HC; Hong J; Lakshmanan M; Lee DY
    Metab Eng; 2020 Jul; 60():138-147. PubMed ID: 32330653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic flux analysis gives an insight on verapamil induced changes in central metabolism of HL-1 cells.
    Strigun A; Noor F; Pironti A; Niklas J; Yang TH; Heinzle E
    J Biotechnol; 2011 Sep; 155(3):299-307. PubMed ID: 21824500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic properties of the redox switch/redox coupling mechanism as determined in primary cultures of cortical neurons and astrocytes from rat brain.
    Ramírez BG; Rodrigues TB; Violante IR; Cruz F; Fonseca LL; Ballesteros P; Castro MM; García-Martín ML; Cerdán S
    J Neurosci Res; 2007 Nov; 85(15):3244-53. PubMed ID: 17600826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A study of D-lactate and extracellular methylglyoxal production in lactate re-utilizing CHO cultures.
    Paoli T; Faulkner J; O'kennedy R; Keshavarz-Moore E
    Biotechnol Bioeng; 2010 Sep; 107(1):182-9. PubMed ID: 20506520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic alterations induced by ischemia in primary cultures of astrocytes: merging 13C NMR spectroscopy and metabolic flux analysis.
    Amaral AI; Teixeira AP; Martens S; Bernal V; Sousa MF; Alves PM
    J Neurochem; 2010 May; 113(3):735-48. PubMed ID: 20141568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells.
    Neermann J; Wagner R
    J Cell Physiol; 1996 Jan; 166(1):152-69. PubMed ID: 8557765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.