BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 22991438)

  • 1. Developmental fate and lineage commitment of singled mouse blastomeres.
    Lorthongpanich C; Doris TP; Limviphuvadh V; Knowles BB; Solter D
    Development; 2012 Oct; 139(20):3722-31. PubMed ID: 22991438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice.
    Tarkowski AK; Suwińska A; Czołowska R; Ożdżeński W
    Dev Biol; 2010 Dec; 348(2):190-8. PubMed ID: 20932967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of early fate decisions at the two-cell stage on the derivation of mouse embryonic stem cell lines.
    González S; Ibáñez E; Santaló J
    Stem Cell Res; 2011 Jul; 7(1):54-65. PubMed ID: 21531646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos.
    Suwińska A; Czołowska R; Ozdzeński W; Tarkowski AK
    Dev Biol; 2008 Oct; 322(1):133-44. PubMed ID: 18692038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic transition of Dnmt3b expression in mouse pre- and early post-implantation embryos.
    Hirasawa R; Sasaki H
    Gene Expr Patterns; 2009 Jan; 9(1):27-30. PubMed ID: 18814855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-cell profiling of epigenetic modifiers identifies PRDM14 as an inducer of cell fate in the mammalian embryo.
    Burton A; Muller J; Tu S; Padilla-Longoria P; Guccione E; Torres-Padilla ME
    Cell Rep; 2013 Nov; 5(3):687-701. PubMed ID: 24183668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of single blastomeres derived from two-cell embryos produced in vitro in pigs.
    Dang-Nguyen TQ; Kaneda M; Somfai T; Haraguchi S; Matsukawa K; Akagi S; Kikuchi K; Nakai M; Nguyen BX; Tajima A; Kanai Y; Nagai T
    Theriogenology; 2011 Jul; 76(1):88-96. PubMed ID: 21396700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating different genetic expression patterns in the early embryo: insights from the mouse model.
    Bruce AW
    Reprod Biomed Online; 2013 Dec; 27(6):586-92. PubMed ID: 23768616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limited predictive value of blastomere angle of division in trophectoderm and inner cell mass specification.
    Watanabe T; Biggins JS; Tannan NB; Srinivas S
    Development; 2014 Jun; 141(11):2279-88. PubMed ID: 24866117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo.
    Jedrusik A; Parfitt DE; Guo G; Skamagki M; Grabarek JB; Johnson MH; Robson P; Zernicka-Goetz M
    Genes Dev; 2008 Oct; 22(19):2692-706. PubMed ID: 18832072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell fate regulation in early mammalian development.
    Oron E; Ivanova N
    Phys Biol; 2012 Aug; 9(4):045002. PubMed ID: 22871593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preimplantation mouse embryo: developmental fate and potency of blastomeres.
    Suwińska A
    Results Probl Cell Differ; 2012; 55():141-63. PubMed ID: 22918805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ESCs injected into the 8-cell stage mouse embryo modify pattern of cleavage and cell lineage specification.
    Humięcka M; Krupa M; Guzewska MM; Maleszewski M; Suwińska A
    Mech Dev; 2016 Aug; 141():40-50. PubMed ID: 27345419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of muscle fate by cellular interaction is required for mesenchyme formation during ascidian embryogenesis.
    Kim GJ; Nishida H
    Dev Biol; 1999 Oct; 214(1):9-22. PubMed ID: 10491253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental fate in chimeras derived from highly asynchronous murine blastomeres.
    Prather RS; First NL
    J Exp Zool; 1987 Apr; 242(1):27-33. PubMed ID: 3598511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos.
    Hirate Y; Hirahara S; Inoue K; Kiyonari H; Niwa H; Sasaki H
    Dev Growth Differ; 2015 Oct; 57(8):544-56. PubMed ID: 26450797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of body axes in the mouse embryo.
    Takaoka K; Yamamoto M; Hamada H
    Curr Opin Genet Dev; 2007 Aug; 17(4):344-50. PubMed ID: 17646095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of cell lineage in two- and four-cell mouse embryos.
    Fujimori T; Kurotaki Y; Miyazaki J; Nabeshima Y
    Development; 2003 Nov; 130(21):5113-22. PubMed ID: 12944430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of RNA binding protein MOEP19 in the oocyte cortex and early embryo indicates pre-patterning related to blastomere polarity and trophectoderm specification.
    Herr JC; Chertihin O; Digilio L; Jha KN; Vemuganti S; Flickinger CJ
    Dev Biol; 2008 Feb; 314(2):300-16. PubMed ID: 18191828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic modification affecting expression of cell polarity and cell fate genes to regulate lineage specification in the early mouse embryo.
    Parfitt DE; Zernicka-Goetz M
    Mol Biol Cell; 2010 Aug; 21(15):2649-60. PubMed ID: 20554762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.