These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22991895)

  • 1. Structural basis of functional group activation by sulfotransferases in complex metabolic pathways.
    McCarthy JG; Eisman EB; Kulkarni S; Gerwick L; Gerwick WH; Wipf P; Sherman DH; Smith JL
    ACS Chem Biol; 2012 Dec; 7(12):1994-2003. PubMed ID: 22991895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terminal alkene formation by the thioesterase of curacin A biosynthesis: structure of a decarboxylating thioesterase.
    Gehret JJ; Gu L; Gerwick WH; Wipf P; Sherman DH; Smith JL
    J Biol Chem; 2011 Apr; 286(16):14445-54. PubMed ID: 21357626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyketide decarboxylative chain termination preceded by o-sulfonation in curacin a biosynthesis.
    Gu L; Wang B; Kulkarni A; Gehret JJ; Lloyd KR; Gerwick L; Gerwick WH; Wipf P; Håkansson K; Smith JL; Sherman DH
    J Am Chem Soc; 2009 Nov; 131(44):16033-5. PubMed ID: 19835378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of sulfotransferases.
    Negishi M; Pedersen LG; Petrotchenko E; Shevtsov S; Gorokhov A; Kakuta Y; Pedersen LC
    Arch Biochem Biophys; 2001 Jun; 390(2):149-57. PubMed ID: 11396917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terminal Olefin Profiles and Phylogenetic Analyses of Olefin Synthases of Diverse Cyanobacterial Species.
    Zhu T; Scalvenzi T; Sassoon N; Lu X; Gugger M
    Appl Environ Microbiol; 2018 Jul; 84(13):. PubMed ID: 29728380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of human sulfotransferases: insights into the mechanisms of action and substrate selectivity.
    Dong D; Ako R; Wu B
    Expert Opin Drug Metab Toxicol; 2012 Jun; 8(6):635-46. PubMed ID: 22512672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of active site residues implies a two-step catalytic mechanism for acyl-ACP thioesterase.
    Jing F; Yandeau-Nelson MD; Nikolau BJ
    Biochem J; 2018 Dec; 475(23):3861-3873. PubMed ID: 30409825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure-based studies of cytosolic sulfotransferase.
    Yoshinari K; Petrotchenko EV; Pedersen LC; Negishi M
    J Biochem Mol Toxicol; 2001; 15(2):67-75. PubMed ID: 11284047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate.
    Maloney FP; Gerwick L; Gerwick WH; Sherman DH; Smith JL
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10316-21. PubMed ID: 27573844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of StaL, a glycopeptide antibiotic sulfotransferase from Streptomyces toyocaensis.
    Shi R; Lamb SS; Bhat S; Sulea T; Wright GD; Matte A; Cygler M
    J Biol Chem; 2007 Apr; 282(17):13073-86. PubMed ID: 17329243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic analysis of a type II polyketide synthase. Role of conserved residues in the beta-ketoacyl synthase-chain length factor heterodimer.
    Dreier J; Khosla C
    Biochemistry; 2000 Feb; 39(8):2088-95. PubMed ID: 10684659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arginine residues in the active site of human phenol sulfotransferase (SULT1A1).
    Chen G; Chen X
    J Biol Chem; 2003 Sep; 278(38):36358-64. PubMed ID: 12867416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of activating sulfotransferase SgdX2 involved in biosynthesis of secondary metabolite sungeidine.
    Mori T; Teramoto T; Kakuta Y
    Biochem Biophys Res Commun; 2024 Jun; 711():149891. PubMed ID: 38621346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei.
    Tang L; Yoon YJ; Choi CY; Hutchinson CR
    Gene; 1998 Aug; 216(2):255-65. PubMed ID: 9729415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis.
    Tibbs ZE; Rohn-Glowacki KJ; Crittenden F; Guidry AL; Falany CN
    Drug Metab Pharmacokinet; 2015 Feb; 30(1):3-20. PubMed ID: 25760527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domain Organization and Active Site Architecture of a Polyketide Synthase C-methyltransferase.
    Skiba MA; Sikkema AP; Fiers WD; Gerwick WH; Sherman DH; Aldrich CC; Smith JL
    ACS Chem Biol; 2016 Dec; 11(12):3319-3327. PubMed ID: 27723289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways.
    Coates RC; Podell S; Korobeynikov A; Lapidus A; Pevzner P; Sherman DH; Allen EE; Gerwick L; Gerwick WH
    PLoS One; 2014; 9(1):e85140. PubMed ID: 24475038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of domain II of flavonol 3-sulfotransferase.
    Marsolais F; Varin L
    Eur J Biochem; 1997 Aug; 247(3):1056-62. PubMed ID: 9288931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic activation of N-hydroxy arylamines and N-hydroxy heterocyclic amines by human sulfotransferase(s).
    Chou HC; Lang NP; Kadlubar FF
    Cancer Res; 1995 Feb; 55(3):525-9. PubMed ID: 7834621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of molecular recognition in the pikromycin polyketide synthase.
    Chen S; Xue Y; Sherman DH; Reynolds KA
    Chem Biol; 2000 Dec; 7(12):907-18. PubMed ID: 11137814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.