These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1836 related articles for article (PubMed ID: 22991896)

  • 61. Atomic layer deposition of Pd nanoparticles on self-supported carbon-Ni/NiO-Pd nanofiber electrodes for electrochemical hydrogen and oxygen evolution reactions.
    Barhoum A; El-Maghrabi HH; Iatsunskyi I; Coy E; Renard A; Salameh C; Weber M; Sayegh S; Nada AA; Roualdes S; Bechelany M
    J Colloid Interface Sci; 2020 Jun; 569():286-297. PubMed ID: 32114107
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nitrogen-Doped Carbon-Encased Bimetallic Selenide for High-Performance Water Electrolysis.
    Cao J; Wang K; Chen J; Lei C; Yang B; Li Z; Lei L; Hou Y; Ostrikov K
    Nanomicro Lett; 2019 Aug; 11(1):67. PubMed ID: 34138006
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts.
    Gao YQ; Liu XY; Yang GW
    Nanoscale; 2016 Mar; 8(9):5015-23. PubMed ID: 26864279
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hierarchical Porous Prism Arrays Composed of Hybrid Ni-NiO-Carbon as Highly Efficient Electrocatalysts for Overall Water Splitting.
    Zhou W; Lu XF; Chen JJ; Zhou T; Liao PQ; Wu M; Li GR
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38906-38914. PubMed ID: 30360101
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Self-Supported Cu-Based Nanowire Arrays as Noble-Metal-Free Electrocatalysts for Oxygen Evolution.
    Hou CC; Fu WF; Chen Y
    ChemSusChem; 2016 Aug; 9(16):2069-73. PubMed ID: 27440473
    [TBL] [Abstract][Full Text] [Related]  

  • 66. From Water Oxidation to Reduction: Transformation from Ni(x)Co(3-x)O4 Nanowires to NiCo/NiCoO(x) Heterostructures.
    Yan X; Li K; Lyu L; Song F; He J; Niu D; Liu L; Hu X; Chen X
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3208-14. PubMed ID: 26784862
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers.
    Yang Y; Fei H; Ruan G; Xiang C; Tour JM
    ACS Nano; 2014 Sep; 8(9):9518-23. PubMed ID: 25134007
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Precious-metal-free Co-Fe-O/rGO synergetic electrocatalysts for oxygen evolution reaction by a facile hydrothermal route.
    Geng J; Kuai L; Kan E; Wang Q; Geng B
    ChemSusChem; 2015 Feb; 8(4):659-64. PubMed ID: 25572639
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65 Zr0.35 O2 prepared by continuous hydrothermal synthesis in supercritical water.
    Kim KH; Kim JR; Ihm SK
    J Hazard Mater; 2009 Aug; 167(1-3):1158-62. PubMed ID: 19264401
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Searching for active binary rutile oxide catalyst for water splitting from first principles.
    Chen D; Fang YH; Liu ZP
    Phys Chem Chem Phys; 2012 Dec; 14(48):16612-7. PubMed ID: 22941355
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Amorphous Fe-Ni-P-B-O Nanocages as Efficient Electrocatalysts for Oxygen Evolution Reaction.
    Ren H; Sun X; Du C; Zhao J; Liu D; Fang W; Kumar S; Chua R; Meng S; Kidkhunthod P; Song L; Li S; Madhavi S; Yan Q
    ACS Nano; 2019 Nov; 13(11):12969-12979. PubMed ID: 31702132
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry.
    Goldsmith ZK; Harshan AK; Gerken JB; Vörös M; Galli G; Stahl SS; Hammes-Schiffer S
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3050-3055. PubMed ID: 28265083
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Controlled Electrodeposition Synthesis of Co-Ni-P Film as a Flexible and Inexpensive Electrode for Efficient Overall Water Splitting.
    Pei Y; Yang Y; Zhang F; Dong P; Baines R; Ge Y; Chu H; Ajayan PM; Shen J; Ye M
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31887-31896. PubMed ID: 28849904
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media.
    Hu X; Tian X; Lin YW; Wang Z
    RSC Adv; 2019 Oct; 9(54):31563-31571. PubMed ID: 35527931
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
    Lhermitte CR; Bartlett BM
    Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Redox switching and oxygen evolution at oxidized metal and metal oxide electrodes: iron in base.
    Lyons ME; Doyle RL; Brandon MP
    Phys Chem Chem Phys; 2011 Dec; 13(48):21530-51. PubMed ID: 22068318
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water.
    Ma W; Ma R; Wang C; Liang J; Liu X; Zhou K; Sasaki T
    ACS Nano; 2015 Feb; 9(2):1977-84. PubMed ID: 25605063
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Heterolayered Ni-Fe Hydroxide/Oxide Nanostructures Generated on a Stainless-Steel Substrate for Efficient Alkaline Water Splitting.
    Todoroki N; Wadayama T
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44161-44169. PubMed ID: 31670501
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH.
    Surendranath Y; Kanan MW; Nocera DG
    J Am Chem Soc; 2010 Nov; 132(46):16501-9. PubMed ID: 20977209
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst.
    Bediako DK; Surendranath Y; Nocera DG
    J Am Chem Soc; 2013 Mar; 135(9):3662-74. PubMed ID: 23360238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 92.