BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 22991940)

  • 1. Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy.
    Kazemi-Zanjani N; Chen H; Goldberg HA; Hunter GK; Grohe B; Lagugné-Labarthet F
    J Am Chem Soc; 2012 Oct; 134(41):17076-82. PubMed ID: 22991940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide.
    Grohe B; O'Young J; Ionescu DA; Lajoie G; Rogers KA; Karttunen M; Goldberg HA; Hunter GK
    J Am Chem Soc; 2007 Dec; 129(48):14946-51. PubMed ID: 17994739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals.
    Taller A; Grohe B; Rogers KA; Goldberg HA; Hunter GK
    Biophys J; 2007 Sep; 93(5):1768-77. PubMed ID: 17496021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of osteopontin peptides mediates adsorption to and incorporation into calcium oxalate crystals.
    O'Young J; Chirico S; Al Tarhuni N; Grohe B; Karttunen M; Goldberg HA; Hunter GK
    Cells Tissues Organs; 2009; 189(1-4):51-5. PubMed ID: 18728346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of osteopontin peptide into kidney stone-related calcium oxalate monohydrate crystals: a quantitative study.
    Gleberzon JS; Liao Y; Mittler S; Goldberg HA; Grohe B
    Urolithiasis; 2019 Oct; 47(5):425-440. PubMed ID: 30569197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of calcium oxalate crystal growth in the presence of osteopontin isoforms: an analysis by scanning confocal interference microcopy.
    Langdon A; Wignall GR; Rogers K; Sørensen ES; Denstedt J; Grohe B; Goldberg HA; Hunter GK
    Calcif Tissue Int; 2009 Mar; 84(3):240-8. PubMed ID: 19189038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible inhibition of calcium oxalate monohydrate growth by an osteopontin phosphopeptide.
    Nene SS; Hunter GK; Goldberg HA; Hutter JL
    Langmuir; 2013 May; 29(21):6287-95. PubMed ID: 23611580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of phosphate groups in inhibition of calcium oxalate crystal growth by osteopontin.
    Hunter GK; Grohe B; Jeffrey S; O'Young J; Sørensen ES; Goldberg HA
    Cells Tissues Organs; 2009; 189(1-4):44-50. PubMed ID: 18703867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular modulation of calcium oxalate crystallization.
    De Yoreo JJ; Qiu SR; Hoyer JR
    Am J Physiol Renal Physiol; 2006 Dec; 291(6):F1123-31. PubMed ID: 17082348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallization of calcium oxalates is controlled by molecular hydrophilicity and specific polyanion-crystal interactions.
    Grohe B; Taller A; Vincent PL; Tieu LD; Rogers KA; Heiss A; Sørensen ES; Mittler S; Goldberg HA; Hunter GK
    Langmuir; 2009 Oct; 25(19):11635-46. PubMed ID: 19725562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Citrate modulates calcium oxalate crystal growth by face-specific interactions.
    Grohe B; O'Young J; Langdon A; Karttunen M; Goldberg HA; Hunter GK
    Cells Tissues Organs; 2011; 194(2-4):176-81. PubMed ID: 21555861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals.
    Ryall RL; Chauvet MC; Grover PK
    BJU Int; 2005 Sep; 96(4):654-63. PubMed ID: 16104927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the catalysis of calcium oxalate dihydrate formation by osteopontin peptides.
    Chan BP; Vincent K; Lajoie GA; Goldberg HA; Grohe B; Hunter GK
    Colloids Surf B Biointerfaces; 2012 Aug; 96():22-8. PubMed ID: 22503630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The osteopontin-controlled switching of calcium oxalate monohydrate morphologies in artificial urine provides insights into the formation of papillary kidney stones.
    Langdon A; Grohe B
    Colloids Surf B Biointerfaces; 2016 Oct; 146():296-306. PubMed ID: 27362921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attachment of calcium oxalate monohydrate crystals on patterned surfaces of proteins and lipid bilayers.
    An Z; Lee S; Oppenheimer H; Wesson JA; Ward MD
    J Am Chem Soc; 2010 Sep; 132(38):13188-90. PubMed ID: 20812679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of hyaluronic acid interaction with calcium oxalate crystals: implication of crystals faces, pH and citrate.
    Lamontagne CA; Plante GE; Grandbois M
    J Mol Recognit; 2011; 24(4):733-40. PubMed ID: 21584883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dihydrate crystals.
    Thurgood LA; Cook AF; Sørensen ES; Ryall RL
    Urol Res; 2010 Oct; 38(5):357-76. PubMed ID: 20652561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney.
    Okada A; Nomura S; Saeki Y; Higashibata Y; Hamamoto S; Hirose M; Itoh Y; Yasui T; Tozawa K; Kohri K
    J Bone Miner Res; 2008 Oct; 23(10):1629-37. PubMed ID: 18505365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and polyaspartate peptide showing occlusion by sectoral (compositional) zoning.
    Chien YC; Masica DL; Gray JJ; Nguyen S; Vali H; McKee MD
    J Biol Chem; 2009 Aug; 284(35):23491-501. PubMed ID: 19581305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring calcium oxalate crystallization: a constant composition approach.
    Kolbach-Mandel AM; Kleinman JG; Wesson JA
    Urolithiasis; 2015 Oct; 43(5):397-409. PubMed ID: 26016572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.