BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22991969)

  • 1. Fmoc-based synthesis of peptide thioacids for azide ligations via 2-cyanoethyl thioesters.
    Raz R; Rademann J
    Org Lett; 2012 Oct; 14(19):5038-41. PubMed ID: 22991969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of peptide thioesters via an N-S acyl shift reaction under mild acidic conditions on an N-4,5-dimethoxy-2-mercaptobenzyl auxiliary group.
    Nakamura K; Kanao T; Uesugi T; Hara T; Sato T; Kawakami T; Aimoto S
    J Pept Sci; 2009 Nov; 15(11):731-7. PubMed ID: 19735084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfo-click reaction via in situ generated thioacids and its application in kinetic target-guided synthesis.
    Namelikonda NK; Manetsch R
    Chem Commun (Camb); 2012 Feb; 48(10):1526-8. PubMed ID: 21892513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Fmoc-based solid-phase synthesis of peptide thioesters with self-purification effect and application in the construction of immobilized SH3 domains.
    Mende F; Beisswenger M; Seitz O
    J Am Chem Soc; 2010 Aug; 132(32):11110-8. PubMed ID: 20662535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fmoc-based synthesis of peptide thioesters for native chemical ligation employing a tert-butyl thiol linker.
    Raz R; Rademann J
    Org Lett; 2011 Apr; 13(7):1606-9. PubMed ID: 21355617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic thioanhydrides: linchpins for multicomponent coupling reactions based on the reaction of thioacids with electron-deficient sulfonamides and azides.
    Crich D; Bowers AA
    Org Lett; 2007 Dec; 9(25):5323-5. PubMed ID: 17979281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of peptide thioester formation via N→Se acyl transfer.
    Adams AL; Macmillan D
    J Pept Sci; 2013 Feb; 19(2):65-73. PubMed ID: 23297044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of C-terminal peptide thioesters using Fmoc-based solid-phase peptide chemistry.
    Shelton PT; Jensen KJ
    Methods Mol Biol; 2013; 1047():119-29. PubMed ID: 23943482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid-catalyzed tandem thiol switch for preparing peptide thioesters from mercaptoethyl esters.
    Eom KD; Tam JP
    Org Lett; 2011 May; 13(10):2610-3. PubMed ID: 21517126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient preparation of Fmoc-aminoacyl-N-ethylcysteine unit, a key device for the synthesis of peptide thioesters.
    Hojo H; Kobayashi H; Ubagai R; Asahina Y; Nakahara Y; Katayama H; Ito Y; Nakahara Y
    Org Biomol Chem; 2011 Oct; 9(19):6807-13. PubMed ID: 21842100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fmoc synthesis of peptide thioesters without post-chain-assembly manipulation.
    Zheng JS; Chang HN; Wang FL; Liu L
    J Am Chem Soc; 2011 Jul; 133(29):11080-3. PubMed ID: 21714552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput synthesis of peptide α-thioesters: a safety catch linker approach enabling parallel hydrogen fluoride cleavage.
    Brust A; Schroeder CI; Alewood PF
    ChemMedChem; 2014 May; 9(5):1038-46. PubMed ID: 24591329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epimerization-free block synthesis of peptides from thioacids and amines with the Sanger and Mukaiyama reagents.
    Crich D; Sharma I
    Angew Chem Int Ed Engl; 2009; 48(13):2355-8. PubMed ID: 19229916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thioacetic acid/NaSH-mediated synthesis of N-protected amino thioacids and their utility in peptide synthesis.
    Mali SM; Gopi HN
    J Org Chem; 2014 Mar; 79(6):2377-83. PubMed ID: 24548175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-phase synthesis of peptide and glycopeptide thioesters through side-chain-anchoring strategies.
    Ficht S; Payne RJ; Guy RT; Wong CH
    Chemistry; 2008; 14(12):3620-9. PubMed ID: 18278777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-pot/sequential native chemical ligation using N-sulfanylethylanilide peptide.
    Otaka A; Sato K; Ding H; Shigenaga A
    Chem Rec; 2012 Oct; 12(5):479-90. PubMed ID: 22927228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple method for preparing peptide C-terminal thioacids and their application in sequential chemoenzymatic ligation.
    Tan XH; Zhang X; Yang R; Liu CF
    Chembiochem; 2008 May; 9(7):1052-6. PubMed ID: 18398882
    [No Abstract]   [Full Text] [Related]  

  • 18. Virtually epimerization-free synthesis of peptide-alpha-thioesters.
    Hogenauer TJ; Wang Q; Sanki AK; Gammon AJ; Chu CH; Kaneshiro CM; Kajihara Y; Michael K
    Org Biomol Chem; 2007 Mar; 5(5):759-62. PubMed ID: 17315060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide ligations accelerated by N-terminal aspartate and glutamate residues.
    Thomas GL; Hsieh YS; Chun CK; Cai ZL; Reimers JR; Payne RJ
    Org Lett; 2011 Sep; 13(18):4770-3. PubMed ID: 21830797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of copper salts on peptide bond formation using peptide thioesters.
    Ingenito R; Wenschuh H
    Org Lett; 2003 Nov; 5(24):4587-90. PubMed ID: 14627390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.