These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22991969)

  • 1. Fmoc-based synthesis of peptide thioacids for azide ligations via 2-cyanoethyl thioesters.
    Raz R; Rademann J
    Org Lett; 2012 Oct; 14(19):5038-41. PubMed ID: 22991969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of peptide thioesters via an N-S acyl shift reaction under mild acidic conditions on an N-4,5-dimethoxy-2-mercaptobenzyl auxiliary group.
    Nakamura K; Kanao T; Uesugi T; Hara T; Sato T; Kawakami T; Aimoto S
    J Pept Sci; 2009 Nov; 15(11):731-7. PubMed ID: 19735084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfo-click reaction via in situ generated thioacids and its application in kinetic target-guided synthesis.
    Namelikonda NK; Manetsch R
    Chem Commun (Camb); 2012 Feb; 48(10):1526-8. PubMed ID: 21892513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Fmoc-based solid-phase synthesis of peptide thioesters with self-purification effect and application in the construction of immobilized SH3 domains.
    Mende F; Beisswenger M; Seitz O
    J Am Chem Soc; 2010 Aug; 132(32):11110-8. PubMed ID: 20662535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fmoc-based synthesis of peptide thioesters for native chemical ligation employing a tert-butyl thiol linker.
    Raz R; Rademann J
    Org Lett; 2011 Apr; 13(7):1606-9. PubMed ID: 21355617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic thioanhydrides: linchpins for multicomponent coupling reactions based on the reaction of thioacids with electron-deficient sulfonamides and azides.
    Crich D; Bowers AA
    Org Lett; 2007 Dec; 9(25):5323-5. PubMed ID: 17979281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of peptide thioester formation via N→Se acyl transfer.
    Adams AL; Macmillan D
    J Pept Sci; 2013 Feb; 19(2):65-73. PubMed ID: 23297044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of C-terminal peptide thioesters using Fmoc-based solid-phase peptide chemistry.
    Shelton PT; Jensen KJ
    Methods Mol Biol; 2013; 1047():119-29. PubMed ID: 23943482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid-catalyzed tandem thiol switch for preparing peptide thioesters from mercaptoethyl esters.
    Eom KD; Tam JP
    Org Lett; 2011 May; 13(10):2610-3. PubMed ID: 21517126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient preparation of Fmoc-aminoacyl-N-ethylcysteine unit, a key device for the synthesis of peptide thioesters.
    Hojo H; Kobayashi H; Ubagai R; Asahina Y; Nakahara Y; Katayama H; Ito Y; Nakahara Y
    Org Biomol Chem; 2011 Oct; 9(19):6807-13. PubMed ID: 21842100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fmoc synthesis of peptide thioesters without post-chain-assembly manipulation.
    Zheng JS; Chang HN; Wang FL; Liu L
    J Am Chem Soc; 2011 Jul; 133(29):11080-3. PubMed ID: 21714552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput synthesis of peptide α-thioesters: a safety catch linker approach enabling parallel hydrogen fluoride cleavage.
    Brust A; Schroeder CI; Alewood PF
    ChemMedChem; 2014 May; 9(5):1038-46. PubMed ID: 24591329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epimerization-free block synthesis of peptides from thioacids and amines with the Sanger and Mukaiyama reagents.
    Crich D; Sharma I
    Angew Chem Int Ed Engl; 2009; 48(13):2355-8. PubMed ID: 19229916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thioacetic acid/NaSH-mediated synthesis of N-protected amino thioacids and their utility in peptide synthesis.
    Mali SM; Gopi HN
    J Org Chem; 2014 Mar; 79(6):2377-83. PubMed ID: 24548175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-phase synthesis of peptide and glycopeptide thioesters through side-chain-anchoring strategies.
    Ficht S; Payne RJ; Guy RT; Wong CH
    Chemistry; 2008; 14(12):3620-9. PubMed ID: 18278777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-pot/sequential native chemical ligation using N-sulfanylethylanilide peptide.
    Otaka A; Sato K; Ding H; Shigenaga A
    Chem Rec; 2012 Oct; 12(5):479-90. PubMed ID: 22927228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple method for preparing peptide C-terminal thioacids and their application in sequential chemoenzymatic ligation.
    Tan XH; Zhang X; Yang R; Liu CF
    Chembiochem; 2008 May; 9(7):1052-6. PubMed ID: 18398882
    [No Abstract]   [Full Text] [Related]  

  • 18. Virtually epimerization-free synthesis of peptide-alpha-thioesters.
    Hogenauer TJ; Wang Q; Sanki AK; Gammon AJ; Chu CH; Kaneshiro CM; Kajihara Y; Michael K
    Org Biomol Chem; 2007 Mar; 5(5):759-62. PubMed ID: 17315060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide ligations accelerated by N-terminal aspartate and glutamate residues.
    Thomas GL; Hsieh YS; Chun CK; Cai ZL; Reimers JR; Payne RJ
    Org Lett; 2011 Sep; 13(18):4770-3. PubMed ID: 21830797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of copper salts on peptide bond formation using peptide thioesters.
    Ingenito R; Wenschuh H
    Org Lett; 2003 Nov; 5(24):4587-90. PubMed ID: 14627390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.