BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2299235)

  • 1. Theoretical investigation of a phased-array hyperthermia system with movable apertures.
    Yuan X; Strohbehn JW; Lynch DR; Johnsen M
    Int J Hyperthermia; 1990; 6(1):227-40. PubMed ID: 2299235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the absorbed power distribution for an annular phased array hyperthermia system.
    Strohbehn JW; Curtis EH; Paulsen KD; Yuan XC; Lynch DR
    Int J Radiat Oncol Biol Phys; 1989 Mar; 16(3):589-99. PubMed ID: 2921161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental assessment of phased-array heating of neck tumours.
    Gross EJ; Cetas TC; Stauffer PR; Liu RL; Lumori ML
    Int J Hyperthermia; 1990; 6(2):453-74. PubMed ID: 2324581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of applicators for a 27 MHz multielectrode current source interstitial hyperthermia system; impedance matching and effective power.
    Kaatee RS; Crezee J; Kanis AP; Lagendijk JJ; Levendag PC; Visser AG
    Phys Med Biol; 1997 Jun; 42(6):1087-108. PubMed ID: 9194130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for optimized application of annular-phased-array systems in clinical hyperthermia.
    Wust P; Nadobny J; Felix R; Deuflhard P; Louis A; John W
    Int J Hyperthermia; 1991; 7(1):157-73. PubMed ID: 2051070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical evaluation of the performance of the Dartmouth IMAAH system to heat cylindrical and ellipsoidal tumour models.
    Mechling JA; Strohbehn JW; France LJ
    Int J Hyperthermia; 1991; 7(3):465-83. PubMed ID: 1919142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An RF phased array applicator designed for hyperthermia breast cancer treatments.
    Wu L; McGough RJ; Arabe OA; Samulski TV
    Phys Med Biol; 2006 Jan; 51(1):1-20. PubMed ID: 16357427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep heating using a movable applicator phased array hyperthermia system. A preclinical feasibility study.
    Raskmark P; Hornsleth SN; Salling LN; Lindegaard JC; Overgaard J
    Acta Oncol; 1994; 33(4):451-5. PubMed ID: 8018379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method.
    Kumaradas JC; Sherar MD
    Phys Med Biol; 2003 Jan; 48(1):1-18. PubMed ID: 12564497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Errors between two- and three-dimensional thermal model predictions of hyperthermia treatments.
    Chen ZP; Miller WH; Roemer RB; Cetas TC
    Int J Hyperthermia; 1990; 6(1):175-91. PubMed ID: 2299231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal and SAR characterization of multielement dual concentric conductor microwave applicators for hyperthermia, a theoretical investigation.
    Rossetto F; Diederich CJ; Stauffer PR
    Med Phys; 2000 Apr; 27(4):745-53. PubMed ID: 10798697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the deposited power distribution inside a layered lossy medium irradiated by a coupled system of concentrically placed waveguide applicators.
    Nikita KS; Maratos NG; Uzunoglu NK
    IEEE Trans Biomed Eng; 1998 Jul; 45(7):909-20. PubMed ID: 9644900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metamaterial lens applicator for microwave hyperthermia of breast cancer.
    Wang G; Gong Y
    Int J Hyperthermia; 2009; 25(6):434-45. PubMed ID: 19925323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurements of effective thermal conductivity during hyperthermia: a comparison of experimental and clinical results.
    Delannoy J; Giaux G; Dittmar A; Newman WH; Delhomme G; Delvalee D
    Int J Hyperthermia; 1990; 6(1):143-54. PubMed ID: 2299227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive microwave phased arrays for local hyperthermia: a review.
    Magin RL; Peterson AF
    Int J Hyperthermia; 1989; 5(4):429-50. PubMed ID: 2664024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical comparison of the temperature distributions produced by three interstitial hyperthermia systems.
    Mechling JA; Strohbehn JW
    Int J Radiat Oncol Biol Phys; 1986 Dec; 12(12):2137-49. PubMed ID: 3793551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer.
    Kok HP; van Haaren PM; van de Kamer JB; Zum Vörde Sive Vörding PJ; Wiersma J; Hulshof MC; Geijsen ED; van Lanschot JJ; Crezee J
    Int J Hyperthermia; 2006 Aug; 22(5):375-89. PubMed ID: 16891240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of the sources in local hyperthermia using a combined finite element-genetic algorithm method.
    Siauve N; Nicolas L; Vollaire C; Marchal C
    Int J Hyperthermia; 2004 Dec; 20(8):815-33. PubMed ID: 15764344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep regional hyperthermia: comparison between the annular phased array and the sigma-60 applicator in the same patients.
    Feldmann HJ; Molls M; Krümplemann S; Stuschke M; Sack H
    Int J Radiat Oncol Biol Phys; 1993 Apr; 26(1):111-6. PubMed ID: 8482617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The concentric-ring array for ultrasound hyperthermia: combined mechanical and electrical scanning.
    Ibbini MS; Cain CA
    Int J Hyperthermia; 1990; 6(2):401-19. PubMed ID: 2324578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.