These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 22992448)

  • 1. Shear modulus measurements on isolated human lens nuclei.
    Chai CK; Burd HJ; Wilde GS
    Exp Eye Res; 2012 Oct; 103():78-81. PubMed ID: 22992448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear modulus data for the human lens determined from a spinning lens test.
    Wilde GS; Burd HJ; Judge SJ
    Exp Eye Res; 2012 Apr; 97(1):36-48. PubMed ID: 22326492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can reliable values of Young's modulus be deduced from Fisher's (1971) spinning lens measurements?
    Burd HJ; Wilde GS; Judge SJ
    Vision Res; 2006 Apr; 46(8-9):1346-60. PubMed ID: 16125748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microindentation of the young porcine ocular lens.
    Reilly M; Ravi N
    J Biomech Eng; 2009 Apr; 131(4):044502. PubMed ID: 19275444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical response of the porcine lens to a spinning test.
    Reilly MA; Martius P; Kumar S; Burd HJ; Stachs O
    Z Med Phys; 2016 Jun; 26(2):127-35. PubMed ID: 26777319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia?
    Heys KR; Cram SL; Truscott RJ
    Mol Vis; 2004 Dec; 10():956-63. PubMed ID: 15616482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear versus micro-shear bond strength test: a finite element stress analysis.
    Placido E; Meira JB; Lima RG; Muench A; de Souza RM; Ballester RY
    Dent Mater; 2007 Sep; 23(9):1086-92. PubMed ID: 17123595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved spinning lens test to determine the stiffness of the human lens.
    Burd HJ; Wilde GS; Judge SJ
    Exp Eye Res; 2011 Jan; 92(1):28-39. PubMed ID: 21040722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation.
    Ning X; Zhu Q; Lanir Y; Margulies SS
    J Biomech Eng; 2006 Dec; 128(6):925-33. PubMed ID: 17154695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal deformation of the human crystalline lens during accommodation.
    Weeber HA; van der Heijde RG
    Acta Ophthalmol; 2008 Sep; 86(6):642-7. PubMed ID: 18752516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling internal stress distributions in the human lens: can opponent theories coexist?
    Belaidi A; Pierscionek BK
    J Vis; 2007 Aug; 7(11):1.1-12. PubMed ID: 17997656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo ultraosound elastographic evaluation of the age-related change of human lens nuclear stiffness.
    Zhou H; Yan H; Yan W; Wang X; Li Q
    BMC Ophthalmol; 2020 Apr; 20(1):135. PubMed ID: 32252697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging.
    Iatridis JC; Setton LA; Weidenbaum M; Mow VC
    J Orthop Res; 1997 Mar; 15(2):318-22. PubMed ID: 9167638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional finite element analysis of the shear bond test.
    DeHoff PH; Anusavice KJ; Wang Z
    Dent Mater; 1995 Mar; 11(2):126-31. PubMed ID: 8621033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of vocal fold cover stiffness by laryngeal muscles: a preliminary study.
    Chhetri DK; Berke GS; Lotfizadeh A; Goodyer E
    Laryngoscope; 2009 Jan; 119(1):222-7. PubMed ID: 19117308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo assessment of the mechanical properties of crystalline lenses in a rabbit model using ultrasound elastography: Effects of ultrasound frequency and age.
    Wang Q; Zhu Y; Shao M; Lin H; Chen S; Chen X; Alizad A; Fatemi M; Zhang X
    Exp Eye Res; 2019 Jul; 184():258-265. PubMed ID: 31077713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principal component analysis of shear strain effects.
    Chen H; Varghese T
    Ultrasonics; 2009 May; 49(4-5):472-83. PubMed ID: 19201435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells.
    Ohashi T; Ishii Y; Ishikawa Y; Matsumoto T; Sato M
    Biomed Mater Eng; 2002; 12(3):319-27. PubMed ID: 12446947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the relationship between lens stiffness and accommodative amplitude.
    Weeber HA; van der Heijde RG
    Exp Eye Res; 2007 Nov; 85(5):602-7. PubMed ID: 17720158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical testing of isolated senile human eye lens nuclei.
    Czygan G; Hartung C
    Med Eng Phys; 1996 Jul; 18(5):345-9. PubMed ID: 8818131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.