These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22992491)

  • 1. Rostral-caudal gradients of abstraction revealed by multi-variate pattern analysis of working memory.
    Nee DE; Brown JW
    Neuroimage; 2012 Nov; 63(3):1285-94. PubMed ID: 22992491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subregions of DLPFC Display Graded yet Distinct Structural and Functional Connectivity.
    Jung J; Lambon Ralph MA; Jackson RL
    J Neurosci; 2022 Apr; 42(15):3241-3252. PubMed ID: 35232759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Rostro-Caudal Axis of Frontal Cortex Is Sensitive to the Domain of Stimulus Information.
    Bahlmann J; Blumenfeld RS; D'Esposito M
    Cereb Cortex; 2015 Jul; 25(7):1815-26. PubMed ID: 24451658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frontal cortex and the discovery of abstract action rules.
    Badre D; Kayser AS; D'Esposito M
    Neuron; 2010 Apr; 66(2):315-26. PubMed ID: 20435006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neural mechanism of cognitive control for resolving conflict between abstract task rules.
    Sheu YS; Courtney SM
    Cortex; 2016 Dec; 85():13-24. PubMed ID: 27771559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a Functional Hierarchy of Association Networks.
    Choi EY; Drayna GK; Badre D
    J Cogn Neurosci; 2018 May; 30(5):722-736. PubMed ID: 29308987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociable frontal-striatal and frontal-parietal networks involved in updating hierarchical contexts in working memory.
    Nee DE; Brown JW
    Cereb Cortex; 2013 Sep; 23(9):2146-58. PubMed ID: 22798339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential contributions of dorso-ventral and rostro-caudal prefrontal white matter tracts to cognitive control in healthy older adults.
    Strenziok M; Greenwood PM; Santa Cruz SA; Thompson JC; Parasuraman R
    PLoS One; 2013; 8(12):e81410. PubMed ID: 24312550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of cognitive control within the lateral prefrontal cortex in schizophrenia.
    Barbalat G; Chambon V; Franck N; Koechlin E; Farrer C
    Arch Gen Psychiatry; 2009 Apr; 66(4):377-86. PubMed ID: 19349307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensory-Biased and Multiple-Demand Processing in Human Lateral Frontal Cortex.
    Noyce AL; Cestero N; Michalka SW; Shinn-Cunningham BG; Somers DC
    J Neurosci; 2017 Sep; 37(36):8755-8766. PubMed ID: 28821668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical error representation in medial prefrontal cortex.
    Zarr N; Brown JW
    Neuroimage; 2016 Jan; 124(Pt A):238-247. PubMed ID: 26343320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the model of caudo-rostral organization of cognitive control in the human with frontal lesions.
    Azuar C; Reyes P; Slachevsky A; Volle E; Kinkingnehun S; Kouneiher F; Bravo E; Dubois B; Koechlin E; Levy R
    Neuroimage; 2014 Jan; 84():1053-60. PubMed ID: 24064070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraparietal sulcus maintains working memory representations of somatosensory categories in an adaptive, context-dependent manner.
    Velenosi LA; Wu YH; Schmidt TT; Blankenburg F
    Neuroimage; 2020 Nov; 221():117146. PubMed ID: 32659356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional coupling underlying motor and cognitive functions of the dorsal premotor cortex.
    Abe M; Hanakawa T
    Behav Brain Res; 2009 Mar; 198(1):13-23. PubMed ID: 19061921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gradients of functional organization in posterior parietal cortex revealed by visual attention, visual short-term memory, and intrinsic functional connectivity.
    Lefco RW; Brissenden JA; Noyce AL; Tobyne SM; Somers DC
    Neuroimage; 2020 Oct; 219():117029. PubMed ID: 32526387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overlapping frontoparietal networks for tactile and visual parametric working memory representations.
    Wu YH; Uluç I; Schmidt TT; Tertel K; Kirilina E; Blankenburg F
    Neuroimage; 2018 Feb; 166():325-334. PubMed ID: 29107771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rostral prefrontal cortex underlies individual differences in working memory capacity: An approach from the hierarchical model of the cognitive control.
    Minamoto T; Yaoi K; Osaka M; Osaka N
    Cortex; 2015 Oct; 71():277-90. PubMed ID: 26280275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementary roles of medial temporal lobes and mid-dorsolateral prefrontal cortex for working memory for novel and familiar trial-unique visual stimuli.
    Schon K; Ross RS; Hasselmo ME; Stern CE
    Eur J Neurosci; 2013 Feb; 37(4):668-78. PubMed ID: 23167976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prefrontal cortex organization: dissociating effects of temporal abstraction, relational abstraction, and integration with FMRI.
    Nee DE; Jahn A; Brown JW
    Cereb Cortex; 2014 Sep; 24(9):2377-87. PubMed ID: 23563962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural Representations of Hierarchical Rule Sets: The Human Control System Represents Rules Irrespective of the Hierarchical Level to Which They Belong.
    Pischedda D; Görgen K; Haynes JD; Reverberi C
    J Neurosci; 2017 Dec; 37(50):12281-12296. PubMed ID: 29114072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.