These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22992491)

  • 21. Neural Representations of Hierarchical Rule Sets: The Human Control System Represents Rules Irrespective of the Hierarchical Level to Which They Belong.
    Pischedda D; Görgen K; Haynes JD; Reverberi C
    J Neurosci; 2017 Dec; 37(50):12281-12296. PubMed ID: 29114072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The hierarchical organization of the lateral prefrontal cortex.
    Nee DE; D'Esposito M
    Elife; 2016 Mar; 5():. PubMed ID: 26999822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Competition in working memory reduces frontal guidance of visual selection.
    Soto D; Greene CM; Chaudhary A; Rotshtein P
    Cereb Cortex; 2012 May; 22(5):1159-69. PubMed ID: 21775675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. View-Independent Working Memory Representations of Artificial Shapes in Prefrontal and Posterior Regions of the Human Brain.
    Christophel TB; Allefeld C; Endisch C; Haynes JD
    Cereb Cortex; 2018 Jun; 28(6):2146-2161. PubMed ID: 28505235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parietal and Frontal Cortex Encode Stimulus-Specific Mnemonic Representations during Visual Working Memory.
    Ester EF; Sprague TC; Serences JT
    Neuron; 2015 Aug; 87(4):893-905. PubMed ID: 26257053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of motivation on working memory: an fMRI and SEM study.
    Szatkowska I; Bogorodzki P; Wolak T; Marchewka A; Szeszkowski W
    Neurobiol Learn Mem; 2008 Sep; 90(2):475-8. PubMed ID: 18620069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory.
    Harding IH; Yücel M; Harrison BJ; Pantelis C; Breakspear M
    Neuroimage; 2015 Feb; 106():144-53. PubMed ID: 25463464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. rTMS evidence of different delay and decision processes in a fronto-parietal neuronal network activated during spatial working memory.
    Koch G; Oliveri M; Torriero S; Carlesimo GA; Turriziani P; Caltagirone C
    Neuroimage; 2005 Jan; 24(1):34-9. PubMed ID: 15588594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Context-dependent switching between proactive and reactive working memory control mechanisms in the right inferior frontal gyrus.
    Marklund P; Persson J
    Neuroimage; 2012 Nov; 63(3):1552-60. PubMed ID: 22906785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Working memory for social cues recruits orbitofrontal cortex and amygdala: a functional magnetic resonance imaging study of delayed matching to sample for emotional expressions.
    LoPresti ML; Schon K; Tricarico MD; Swisher JD; Celone KA; Stern CE
    J Neurosci; 2008 Apr; 28(14):3718-28. PubMed ID: 18385330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Movement representation in the dorsal and ventral premotor areas of owl monkeys: a microstimulation study.
    Preuss TM; Stepniewska I; Kaas JH
    J Comp Neurol; 1996 Aug; 371(4):649-76. PubMed ID: 8841916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Working memory load modulation of parieto-frontal connections: evidence from dynamic causal modeling.
    Ma L; Steinberg JL; Hasan KM; Narayana PA; Kramer LA; Moeller FG
    Hum Brain Mapp; 2012 Aug; 33(8):1850-67. PubMed ID: 21692148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brain activity related to working memory for temporal order and object information.
    Roberts BM; Libby LA; Inhoff MC; Ranganath C
    Behav Brain Res; 2018 Nov; 354():55-63. PubMed ID: 28602963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Content-Specific Codes of Parametric Vibrotactile Working Memory in Humans.
    Schmidt TT; Wu YH; Blankenburg F
    J Neurosci; 2017 Oct; 37(40):9771-9777. PubMed ID: 28893928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional specialization of areas along the anterior-posterior axis of the primate prefrontal cortex.
    Riley MR; Qi XL; Constantinidis C
    Cereb Cortex; 2017 Jul; 27(7):3683-3697. PubMed ID: 27371761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unravelling the intrinsic functional organization of the human lateral frontal cortex: a parcellation scheme based on resting state fMRI.
    Goulas A; Uylings HB; Stiers P
    J Neurosci; 2012 Jul; 32(30):10238-52. PubMed ID: 22836258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Internally generated and directly cued task sets: an investigation with fMRI.
    Forstmann BU; Brass M; Koch I; von Cramon DY
    Neuropsychologia; 2005; 43(6):943-52. PubMed ID: 15716164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for quantitative domain dominance for verbal and spatial working memory in frontal and parietal cortex.
    Walter H; Bretschneider V; Grön G; Zurowski B; Wunderlich AP; Tomczak R; Spitzer M
    Cortex; 2003; 39(4-5):897-911. PubMed ID: 14584558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of the cerebellar cortex and nuclei in verbal and visuospatial working memory: a 7 T fMRI study.
    Thürling M; Hautzel H; Küper M; Stefanescu MR; Maderwald S; Ladd ME; Timmann D
    Neuroimage; 2012 Sep; 62(3):1537-50. PubMed ID: 22634219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of treatment with the atypical neuroleptic quetiapine on working memory function: a functional MRI follow-up investigation.
    Meisenzahl EM; Scheuerecker J; Zipse M; Ufer S; Wiesmann M; Frodl T; Koutsouleris N; Zetzsche T; Schmitt G; Riedel M; Spellmann I; Dehning S; Linn J; Brückmann H; Möller HJ
    Eur Arch Psychiatry Clin Neurosci; 2006 Dec; 256(8):522-31. PubMed ID: 17151834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.