These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 22992616)

  • 1. Reproducibility of trabecular bone structure measurements of the distal radius at 1.5 and 3.0 T magnetic resonance imaging.
    Baum T; Dütsch Y; Müller D; Monetti R; Sidorenko I; Räth C; Rummeny EJ; Link TM; Bauer JS
    J Comput Assist Tomogr; 2012; 36(5):623-6. PubMed ID: 22992616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia.
    Gomberg BR; Wehrli FW; Vasilić B; Weening RH; Saha PK; Song HK; Wright AC
    Bone; 2004 Jul; 35(1):266-76. PubMed ID: 15207767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of trabecular bone structure from high-resolution magnetic resonance images using fuzzy logic.
    Carballido-Gamio J; Phan C; Link TM; Majumdar S
    Magn Reson Imaging; 2006 Oct; 24(8):1023-9. PubMed ID: 16997072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a compact MRI system for trabecular bone microstructure measurements of the distal radius.
    Handa S; Tomiha S; Haishi T; Kose K
    Magn Reson Med; 2007 Aug; 58(2):225-9. PubMed ID: 17654589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelet-based characterization of vertebral trabecular bone structure from magnetic resonance images at 3 T compared with micro-computed tomographic measurements.
    Krug R; Carballido-Gamio J; Burghardt AJ; Haase S; Sedat JW; Moss WC; Majumdar S
    Magn Reson Imaging; 2007 Apr; 25(3):392-8. PubMed ID: 17371730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 7T MRI of distal radius trabecular bone microarchitecture: How trabecular bone quality varies depending on distance from end-of-bone.
    Griffin LM; Honig S; Chen C; Saha PK; Regatte R; Chang G
    J Magn Reson Imaging; 2017 Mar; 45(3):872-878. PubMed ID: 27439146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo assessment of trabecular bone structure at the distal radius from high-resolution magnetic resonance images.
    Gordon CL; Webber CE; Christoforou N; Nahmias C
    Med Phys; 1997 Apr; 24(4):585-93. PubMed ID: 9127312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trabecular bone morphology from micro-magnetic resonance imaging.
    Hipp JA; Jansujwicz A; Simmons CA; Snyder BD
    J Bone Miner Res; 1996 Feb; 11(2):286-97. PubMed ID: 8822353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of trabecular structure using high resolution magnetic resonance imaging.
    Majumdar S; Genant HK
    Stud Health Technol Inform; 1997; 40():81-96. PubMed ID: 10168884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging.
    Majumdar S; Genant HK; Grampp S; Newitt DC; Truong VH; Lin JC; Mathur A
    J Bone Miner Res; 1997 Jan; 12(1):111-8. PubMed ID: 9240733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can magnetic resonance imaging-derived bone models be used for accurate motion measurement with single-plane three-dimensional shape registration?
    Moro-oka TA; Hamai S; Miura H; Shimoto T; Higaki H; Fregly BJ; Iwamoto Y; Banks SA
    J Orthop Res; 2007 Jul; 25(7):867-72. PubMed ID: 17290431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling.
    Borah B; Dufresne TE; Cockman MD; Gross GJ; Sod EW; Myers WR; Combs KS; Higgins RE; Pierce SA; Stevens ML
    J Bone Miner Res; 2000 Sep; 15(9):1786-97. PubMed ID: 10976998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of trabecular bone yield and post-yield behavior from high-resolution MRI-based nonlinear finite element analysis at the distal radius of premenopausal and postmenopausal women susceptible to osteoporosis.
    Zhang N; Magland JF; Rajapakse CS; Lam SB; Wehrli FW
    Acad Radiol; 2013 Dec; 20(12):1584-91. PubMed ID: 24200486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo assessment of the trabecular bone microstructure of the distal radius using a compact MRI system.
    Handa S; Tomiha S; Kose K; Haishi T
    Magn Reson Med Sci; 2009; 8(1):39-42. PubMed ID: 19336988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI of bone marrow in the distal radius: in vivo precision of effective transverse relaxation times.
    Grampp S; Majumdar S; Jergas M; Lang P; Gies A; Genant HK
    Eur Radiol; 1995; 5(1):43-8. PubMed ID: 11539927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local 3D scaling properties for the analysis of trabecular bone extracted from high-resolution magnetic resonance imaging of human trabecular bone: comparison with bone mineral density in the prediction of biomechanical strength in vitro.
    Boehm HF; Raeth C; Monetti RA; Mueller D; Newitt D; Majumdar S; Rummeny E; Morfill G; Link TM
    Invest Radiol; 2003 May; 38(5):269-80. PubMed ID: 12750616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [T2 relaxation time in patellar cartilage--global and regional reproducibility at 1.5 tesla and 3 tesla].
    Glaser C; Horng A; Mendlik T; Weckbach S; Hoffmann RT; Wagner S; Raya JG; Horger W; Reiser M
    Rofo; 2007 Feb; 179(2):146-52. PubMed ID: 17262244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla.
    Welsch GH; Zak L; Mamisch TC; Resinger C; Marlovits S; Trattnig S
    Invest Radiol; 2009 Sep; 44(9):603-12. PubMed ID: 19692843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of refocused steady-state free-precession methods at 1.5 and 3 T to in vivo high-resolution MRI of trabecular bone: simulations and experiments.
    Banerjee S; Han ET; Krug R; Newitt DC; Majumdar S
    J Magn Reson Imaging; 2005 Jun; 21(6):818-25. PubMed ID: 15906346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T2, Carr-Purcell T2 and T1rho of fat and water as surrogate markers of trabecular bone structure.
    Lammentausta E; Silvast TS; Närväinen J; Jurvelin JS; Nieminen MT; Gröhn OH
    Phys Med Biol; 2008 Feb; 53(3):543-55. PubMed ID: 18199901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.