These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 22992674)
21. Phospholipase C-gamma1 is involved in signaling the activation by high NaCl of the osmoprotective transcription factor TonEBP/OREBP. Irarrazabal CE; Gallazzini M; Schnetz MP; Kunin M; Simons BL; Williams CK; Burg MB; Ferraris JD Proc Natl Acad Sci U S A; 2010 Jan; 107(2):906-11. PubMed ID: 20080774 [TBL] [Abstract][Full Text] [Related]
22. Differential regulation of NFAT5 by NKCC2 isoforms in medullary thick ascending limb (mTAL) cells. Hao S; Zhao H; Darzynkiewicz Z; Battula S; Ferreri NR Am J Physiol Renal Physiol; 2011 Apr; 300(4):F966-75. PubMed ID: 21228109 [TBL] [Abstract][Full Text] [Related]
23. Peptide affinity analysis of proteins that bind to an unstructured NH2-terminal region of the osmoprotective transcription factor NFAT5. DuMond JF; Ramkissoon K; Zhang X; Izumi Y; Wang X; Eguchi K; Gao S; Mukoyama M; Burg MB; Ferraris JD Physiol Genomics; 2016 Apr; 48(4):290-305. PubMed ID: 26757802 [TBL] [Abstract][Full Text] [Related]
24. 14-3-3-β and -{varepsilon} contribute to activation of the osmoprotective transcription factor NFAT5 by increasing its protein abundance and its transactivating activity. Izumi Y; Burg MB; Ferraris JD Physiol Rep; 2014; 2(4):e12000. PubMed ID: 24771694 [TBL] [Abstract][Full Text] [Related]
25. Role of nuclear factor of activated T-cells 5 in regulating hypertonic-mediated secretin receptor expression in kidney collecting duct cells. Chua OW; Wong KK; Ko BC; Chung SK; Chow BK; Lee LT Biochim Biophys Acta; 2016 Jul; 1859(7):922-32. PubMed ID: 27080132 [TBL] [Abstract][Full Text] [Related]
26. Activator protein-1 contributes to high NaCl-induced increase in tonicity-responsive enhancer/osmotic response element-binding protein transactivating activity. Irarrazabal CE; Williams CK; Ely MA; Birrer MJ; Garcia-Perez A; Burg MB; Ferraris JD J Biol Chem; 2008 Feb; 283(5):2554-63. PubMed ID: 18056707 [TBL] [Abstract][Full Text] [Related]
27. Leptomycin B alters the subcellular distribution of CRM1 (Exportin 1). Rahmani K; Dean DA Biochem Biophys Res Commun; 2017 Jun; 488(2):253-258. PubMed ID: 28412356 [TBL] [Abstract][Full Text] [Related]
29. ERK1/2 phosphorylates HIF-2α and regulates its activity by controlling its CRM1-dependent nuclear shuttling. Gkotinakou IM; Befani C; Simos G; Liakos P J Cell Sci; 2019 Apr; 132(7):. PubMed ID: 30962349 [TBL] [Abstract][Full Text] [Related]
30. Mutations in a small region of the exportin Crm1p disrupt the daughter cell-specific nuclear localization of the transcription factor Ace2p in Saccharomyces cerevisiae. Bourens M; Racki W; Bécam AM; Panozzo C; Boulon S; Bertrand E; Herbert CJ Biol Cell; 2008 Jun; 100(6):343-54. PubMed ID: 18076379 [TBL] [Abstract][Full Text] [Related]
31. A CRM1-dependent nuclear export pathway is involved in the regulation of IRF-5 subcellular localization. Lin R; Yang L; Arguello M; Penafuerte C; Hiscott J J Biol Chem; 2005 Jan; 280(4):3088-95. PubMed ID: 15556946 [TBL] [Abstract][Full Text] [Related]
32. Casein-kinase-II-dependent phosphorylation of PPARgamma provokes CRM1-mediated shuttling of PPARgamma from the nucleus to the cytosol. von Knethen A; Tzieply N; Jennewein C; Brüne B J Cell Sci; 2010 Jan; 123(Pt 2):192-201. PubMed ID: 20026644 [TBL] [Abstract][Full Text] [Related]
33. TonEBP/NFAT5 stimulates transcription of HSP70 in response to hypertonicity. Woo SK; Lee SD; Na KY; Park WK; Kwon HM Mol Cell Biol; 2002 Aug; 22(16):5753-60. PubMed ID: 12138186 [TBL] [Abstract][Full Text] [Related]
34. Characterization of BRCA1 protein targeting, dynamics, and function at the centrosome: a role for the nuclear export signal, CRM1, and Aurora A kinase. Brodie KM; Henderson BR J Biol Chem; 2012 Mar; 287(10):7701-16. PubMed ID: 22262852 [TBL] [Abstract][Full Text] [Related]
35. mDia2 shuttles between the nucleus and the cytoplasm through the importin-{alpha}/{beta}- and CRM1-mediated nuclear transport mechanism. Miki T; Okawa K; Sekimoto T; Yoneda Y; Watanabe S; Ishizaki T; Narumiya S J Biol Chem; 2009 Feb; 284(9):5753-62. PubMed ID: 19117945 [TBL] [Abstract][Full Text] [Related]
36. NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Go WY; Liu X; Roti MA; Liu F; Ho SN Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10673-8. PubMed ID: 15247420 [TBL] [Abstract][Full Text] [Related]
37. Inhibition of CRM1-mediated nuclear export of transcription factors by leukemogenic NUP98 fusion proteins. Takeda A; Sarma NJ; Abdul-Nabi AM; Yaseen NR J Biol Chem; 2010 May; 285(21):16248-57. PubMed ID: 20233715 [TBL] [Abstract][Full Text] [Related]
38. Expanded polyglutamine domain possesses nuclear export activity which modulates subcellular localization and toxicity of polyQ disease protein via exportin-1. Chan WM; Tsoi H; Wu CC; Wong CH; Cheng TC; Li HY; Lau KF; Shaw PC; Perrimon N; Chan HY Hum Mol Genet; 2011 May; 20(9):1738-50. PubMed ID: 21300695 [TBL] [Abstract][Full Text] [Related]
39. Insights into a CRM1-mediated RNA-nuclear export pathway in Trypanosoma cruzi. Cuevas IC; Frasch AC; D'Orso I Mol Biochem Parasitol; 2005 Jan; 139(1):15-24. PubMed ID: 15610815 [TBL] [Abstract][Full Text] [Related]
40. HES1 potentiates high salt stress response as an enhancer of NFAT5-DNA binding. Ryuno H; Hanafusa Y; Fujisawa T; Ogawa M; Adachi H; Naguro I; Ichijo H Commun Biol; 2024 Oct; 7(1):1290. PubMed ID: 39384976 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]