These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 22992747)

  • 1. Expansion of protein farnesyltransferase specificity using "tunable" active site interactions: development of bioengineered prenylation pathways.
    Hougland JL; Gangopadhyay SA; Fierke CA
    J Biol Chem; 2012 Nov; 287(45):38090-100. PubMed ID: 22992747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted reengineering of protein geranylgeranyltransferase type I selectivity functionally implicates active-site residues in protein-substrate recognition.
    Gangopadhyay SA; Losito EL; Hougland JL
    Biochemistry; 2014 Jan; 53(2):434-46. PubMed ID: 24344934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid residues that define both the isoprenoid and CAAX preferences of the Saccharomyces cerevisiae protein farnesyltransferase. Creating the perfect farnesyltransferase.
    Caplin BE; Ohya Y; Marshall MS
    J Biol Chem; 1998 Apr; 273(16):9472-9. PubMed ID: 9545274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity.
    Reid TS; Terry KL; Casey PJ; Beese LS
    J Mol Biol; 2004 Oct; 343(2):417-33. PubMed ID: 15451670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein farnesyltransferase.
    Park HW; Beese LS
    Curr Opin Struct Biol; 1997 Dec; 7(6):873-80. PubMed ID: 9434909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient farnesylation of an extended C-terminal C(
    Blanden MJ; Suazo KF; Hildebrandt ER; Hardgrove DS; Patel M; Saunders WP; Distefano MD; Schmidt WK; Hougland JL
    J Biol Chem; 2018 Feb; 293(8):2770-2785. PubMed ID: 29282289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate.
    Long SB; Casey PJ; Beese LS
    Biochemistry; 1998 Jul; 37(27):9612-8. PubMed ID: 9657673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of protein farnesyltransferase to a geranylgeranyltransferase.
    Terry KL; Casey PJ; Beese LS
    Biochemistry; 2006 Aug; 45(32):9746-55. PubMed ID: 16893176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay of isoprenoid and peptide substrate specificity in protein farnesyltransferase.
    Reigard SA; Zahn TJ; Haworth KB; Hicks KA; Fierke CA; Gibbs RA
    Biochemistry; 2005 Aug; 44(33):11214-23. PubMed ID: 16101305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chaperone SmgGDS-607 has a dual role, both activating and inhibiting farnesylation of small GTPases.
    García-Torres D; Fierke CA
    J Biol Chem; 2019 Aug; 294(31):11793-11804. PubMed ID: 31197034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Context-dependent substrate recognition by protein farnesyltransferase.
    Hougland JL; Lamphear CL; Scott SA; Gibbs RA; Fierke CA
    Biochemistry; 2009 Mar; 48(8):1691-701. PubMed ID: 19199818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upstream polybasic region in peptides enhances dual specificity for prenylation by both farnesyltransferase and geranylgeranyltransferase type I.
    Hicks KA; Hartman HL; Fierke CA
    Biochemistry; 2005 Nov; 44(46):15325-33. PubMed ID: 16285736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel peptide substrates for protein farnesyltransferase reveals two substrate classes with distinct sequence selectivities.
    Hougland JL; Hicks KA; Hartman HL; Kelly RA; Watt TJ; Fierke CA
    J Mol Biol; 2010 Jan; 395(1):176-90. PubMed ID: 19878682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of cyclo-acetoacetyl-L-tryptophan dimethylallyltransferase in cyclopiazonic acid biosynthesis: substrate promiscuity and site directed mutagenesis studies.
    Liu X; Walsh CT
    Biochemistry; 2009 Nov; 48(46):11032-44. PubMed ID: 19877600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient prenylation by a plant geranylgeranyltransferase-I requires a functional CaaL box motif and a proximal polybasic domain.
    Caldelari D; Sternberg H; Rodríguez-Concepción M; Gruissem W; Yalovsky S
    Plant Physiol; 2001 Aug; 126(4):1416-29. PubMed ID: 11500541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic studies of protein farnesyltransferase mutants establish active substrate conformation.
    Pickett JS; Bowers KE; Hartman HL; Fu HW; Embry AC; Casey PJ; Fierke CA
    Biochemistry; 2003 Aug; 42(32):9741-8. PubMed ID: 12911316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positively charged side chains in protein farnesyltransferase enhance catalysis by stabilizing the formation of the diphosphate leaving group.
    Bowers KE; Fierke CA
    Biochemistry; 2004 May; 43(18):5256-65. PubMed ID: 15122891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Farnesylation of nonpeptidic thiol compounds by protein farnesyltransferase.
    Hightower KE; Casey PJ; Fierke CA
    Biochemistry; 2001 Jan; 40(4):1002-10. PubMed ID: 11170422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein farnesyltransferase: kinetics of farnesyl pyrophosphate binding and product release.
    Furfine ES; Leban JJ; Landavazo A; Moomaw JF; Casey PJ
    Biochemistry; 1995 May; 34(20):6857-62. PubMed ID: 7756316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide specificity of protein prenyltransferases is determined mainly by reactivity rather than binding affinity.
    Hartman HL; Hicks KA; Fierke CA
    Biochemistry; 2005 Nov; 44(46):15314-24. PubMed ID: 16285735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.