These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 22992832)
1. Rapid lymph accumulation of polystyrene nanoparticles following pulmonary administration. Mohammad AK; Amayreh LK; Mazzara JM; Reineke JJ Pharm Res; 2013 Feb; 30(2):424-34. PubMed ID: 22992832 [TBL] [Abstract][Full Text] [Related]
2. Distribution of Systemically Administered Nanoparticles Reveals a Size-Dependent Effect Immediately following Cardiac Ischaemia-Reperfusion Injury. Lundy DJ; Chen KH; Toh EK; Hsieh PC Sci Rep; 2016 May; 6():25613. PubMed ID: 27161857 [TBL] [Abstract][Full Text] [Related]
3. Intraductal Drug Delivery to the Breast: Effect of Particle Size and Formulation on Breast Duct and Lymph Node Retention. Joseph MK; Islam M; Reineke J; Hildreth M; Woyengo T; Pillatzki A; Baride A; Perumal O Mol Pharm; 2020 Feb; 17(2):441-452. PubMed ID: 31886676 [TBL] [Abstract][Full Text] [Related]
4. Differential uptake of nanoparticles and microparticles by pulmonary APC subsets induces discrete immunological imprints. Hardy CL; Lemasurier JS; Mohamud R; Yao J; Xiang SD; Rolland JM; O'Hehir RE; Plebanski M J Immunol; 2013 Nov; 191(10):5278-90. PubMed ID: 24123688 [TBL] [Abstract][Full Text] [Related]
5. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. Jani P; Halbert GW; Langridge J; Florence AT J Pharm Pharmacol; 1990 Dec; 42(12):821-6. PubMed ID: 1983142 [TBL] [Abstract][Full Text] [Related]
6. Compared in vivo toxicity in mice of lung delivered biodegradable and non-biodegradable nanoparticles. Aragao-Santiago L; Hillaireau H; Grabowski N; Mura S; Nascimento TL; Dufort S; Coll JL; Tsapis N; Fattal E Nanotoxicology; 2016; 10(3):292-302. PubMed ID: 26573338 [TBL] [Abstract][Full Text] [Related]
7. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Amrite AC; Edelhauser HF; Singh SR; Kompella UB Mol Vis; 2008 Jan; 14():150-60. PubMed ID: 18334929 [TBL] [Abstract][Full Text] [Related]
8. Rapid translocation of nanoparticles from the lung airspaces to the body. Choi HS; Ashitate Y; Lee JH; Kim SH; Matsui A; Insin N; Bawendi MG; Semmler-Behnke M; Frangioni JV; Tsuda A Nat Biotechnol; 2010 Dec; 28(12):1300-3. PubMed ID: 21057497 [TBL] [Abstract][Full Text] [Related]
9. A comparison of nanoparticle and fine particle uptake by Daphnia magna. Rosenkranz P; Chaudhry Q; Stone V; Fernandes TF Environ Toxicol Chem; 2009 Oct; 28(10):2142-9. PubMed ID: 19588999 [TBL] [Abstract][Full Text] [Related]
11. Cellular biodistribution of polymeric nanoparticles in the immune system. Yang YW; Luo WH J Control Release; 2016 Apr; 227():82-93. PubMed ID: 26873334 [TBL] [Abstract][Full Text] [Related]
12. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Kulkarni SA; Feng SS Pharm Res; 2013 Oct; 30(10):2512-22. PubMed ID: 23314933 [TBL] [Abstract][Full Text] [Related]
13. Nanoparticles target distinct dendritic cell populations according to their size. Manolova V; Flace A; Bauer M; Schwarz K; Saudan P; Bachmann MF Eur J Immunol; 2008 May; 38(5):1404-13. PubMed ID: 18389478 [TBL] [Abstract][Full Text] [Related]
14. Tissue distribution of 20 nm, 100 nm and 1000 nm fluorescent polystyrene latex nanospheres following acute systemic or acute and repeat airway exposure in the rat. Sarlo K; Blackburn KL; Clark ED; Grothaus J; Chaney J; Neu S; Flood J; Abbott D; Bohne C; Casey K; Fryer C; Kuhn M Toxicology; 2009 Sep; 263(2-3):117-26. PubMed ID: 19615422 [TBL] [Abstract][Full Text] [Related]
15. Deposition behavior of inhaled nanostructured TiO2 in rats: fractions of particle diameter below 100 nm (nanoscale) and the slicing bias of transmission electron microscopy. Morfeld P; Treumann S; Ma-Hock L; Bruch J; Landsiedel R Inhal Toxicol; 2012 Dec; 24(14):939-51. PubMed ID: 23216155 [TBL] [Abstract][Full Text] [Related]
16. Effect of particle size on the lymphatic distribution of 111Indium-aminopolystyrene through intrapleural administration. Liu J; Scollard DA; Reilly RM; Wu XY; Johnston MR Lymphology; 2008 Dec; 41(4):153-60. PubMed ID: 19306661 [TBL] [Abstract][Full Text] [Related]
17. Size-dependent uptake of particles by pulmonary antigen-presenting cell populations and trafficking to regional lymph nodes. Blank F; Stumbles PA; Seydoux E; Holt PG; Fink A; Rothen-Rutishauser B; Strickland DH; von Garnier C Am J Respir Cell Mol Biol; 2013 Jul; 49(1):67-77. PubMed ID: 23492193 [TBL] [Abstract][Full Text] [Related]
18. Dose-dependent clearance kinetics of intratracheally administered titanium dioxide nanoparticles in rat lung. Shinohara N; Oshima Y; Kobayashi T; Imatanaka N; Nakai M; Ichinose T; Sasaki T; Zhang G; Fukui H; Gamo M Toxicology; 2014 Nov; 325():1-11. PubMed ID: 25128818 [TBL] [Abstract][Full Text] [Related]
19. Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups. Ekkapongpisit M; Giovia A; Follo C; Caputo G; Isidoro C Int J Nanomedicine; 2012; 7():4147-58. PubMed ID: 22904626 [TBL] [Abstract][Full Text] [Related]
20. Circulation time and body distribution of 14C-labeled amino-modified polystyrene nanoparticles in mice. Simon BH; Ando HY; Gupta PK J Pharm Sci; 1995 Oct; 84(10):1249-53. PubMed ID: 8801343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]