These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 22993123)
1. The effects of supercritical carbon dioxide processing on progesterone dispersion systems: a multivariate study. Falconer JR; Wen J; Zargar-Shoshtari S; Chen JJ; Mohammed F; Chan J; Alany RG AAPS PharmSciTech; 2012 Dec; 13(4):1255-65. PubMed ID: 22993123 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of progesterone dispersions using supercritical carbon dioxide. Falconer JR; Wen J; Zargar-Shoshtari S; Chen JJ; Farid M; Tallon SJ; Alany RG Drug Dev Ind Pharm; 2014 Apr; 40(4):458-69. PubMed ID: 23418960 [TBL] [Abstract][Full Text] [Related]
3. Optimization of a PGSS (particles from gas saturated solutions) process for a fenofibrate lipid-based solid dispersion formulation. Pestieau A; Krier F; Lebrun P; Brouwers A; Streel B; Evrard B Int J Pharm; 2015 May; 485(1-2):295-305. PubMed ID: 25796121 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of progesterone permeability from supercritical fluid processed dispersion systems. Falconer JR; Wen J; Zargar-Shoshtari S; Chen JJ; Farid M; El Maghraby GM; Alany RG Pharm Dev Technol; 2014 Mar; 19(2):238-46. PubMed ID: 23432633 [TBL] [Abstract][Full Text] [Related]
5. Supercritical carbon dioxide processing of active pharmaceutical ingredients for polymorphic control and for complex formation. Moribe K; Tozuka Y; Yamamoto K Adv Drug Deliv Rev; 2008 Feb; 60(3):328-38. PubMed ID: 18006109 [TBL] [Abstract][Full Text] [Related]
6. Gas-saturated solution process to obtain microcomposite particles of alpha lipoic acid/hydrogenated colza oil in supercritical carbon dioxide. Mishima K; Honjo M; Sharmin T; Ito S; Kawakami R; Kato T; Misumi M; Suetsugu T; Orii H; Kawano H; Irie K; Sano K; Mishima K; Harada T; Ouchi M Pharm Dev Technol; 2016 Sep; 21(6):737-48. PubMed ID: 26024240 [TBL] [Abstract][Full Text] [Related]
7. Micronization, characterization and in-vitro dissolution of shellac from PGSS supercritical CO2 technique. Labuschagne PW; Naicker B; Kalombo L Int J Pharm; 2016 Feb; 499(1-2):205-216. PubMed ID: 26707412 [TBL] [Abstract][Full Text] [Related]
8. PEGylated Biodegradable Polyesters for PGSS Microparticles Formulation: Processability, Physical and Release Properties. Perinelli DR; Cespi M; Bonacucina G; Naylor A; Whitaker M; Lam JK; Howdle SM; Casettari L; Palmieri GF Curr Drug Deliv; 2016; 13(5):673-81. PubMed ID: 26674199 [TBL] [Abstract][Full Text] [Related]
9. Itraconazole formation using supercritical carbon dioxide. Hassan A; Tang YM; Ayres JW Drug Dev Ind Pharm; 2004; 30(10):1029-35. PubMed ID: 15595569 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of dissolution amount and in vivo bioavailability of itraconazole by complexation with beta-cyclodextrin using supercritical carbon dioxide. Hassan HA; Al-Marzouqi AH; Jobe B; Hamza AA; Ramadan GA J Pharm Biomed Anal; 2007 Oct; 45(2):243-50. PubMed ID: 17630246 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of P(L)LA-PEG-P(L)LA as processing aid for biodegradable particles from gas saturated solutions (PGSS) process. Perinelli DR; Bonacucina G; Cespi M; Naylor A; Whitaker M; Palmieri GF; Giorgioni G; Casettari L Int J Pharm; 2014 Jul; 468(1-2):250-7. PubMed ID: 24746690 [TBL] [Abstract][Full Text] [Related]
12. Influence of the preparation method on the physicochemical properties of indomethacin and methyl-β-cyclodextrin complexes. Rudrangi SR; Bhomia R; Trivedi V; Vine GJ; Mitchell JC; Alexander BD; Wicks SR Int J Pharm; 2015 Feb; 479(2):381-90. PubMed ID: 25579867 [TBL] [Abstract][Full Text] [Related]
13. A silica-supported solid dispersion of bifendate using supercritical carbon dioxide method with enhanced dissolution rate and oral bioavailability. Cai C; Liu M; Li Y; Guo B; Chang H; Zhang X; Yang X; Zhang T Drug Dev Ind Pharm; 2016; 42(3):412-7. PubMed ID: 26219343 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of supercritical fluid technology as preparative technique of benzocaine-cyclodextrin complexes--comparison with conventional methods. Al-Marzouqi AH; Jobe B; Dowaidar A; Maestrelli F; Mura P J Pharm Biomed Anal; 2007 Jan; 43(2):566-74. PubMed ID: 17010552 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous production and co-mixing of microparticles of nevirapine with excipients by supercritical antisolvent method for dissolution enhancement. Sanganwar GP; Sathigari S; Babu RJ; Gupta RB Eur J Pharm Sci; 2010 Jan; 39(1-3):164-74. PubMed ID: 19961931 [TBL] [Abstract][Full Text] [Related]
16. Process optimization for the supercritical carbondioxide extraction of lycopene from ripe grapefruit (Citrus paradisi) endocarp. Priyadarsani S; Patel AS; Kar A; Dash S Sci Rep; 2021 May; 11(1):10273. PubMed ID: 33986424 [TBL] [Abstract][Full Text] [Related]
17. Development of megestrol acetate solid dispersion nanoparticles for enhanced oral delivery by using a supercritical antisolvent process. Ha ES; Kim JS; Baek IH; Yoo JW; Jung Y; Moon HR; Kim MS Drug Des Devel Ther; 2015; 9():4269-77. PubMed ID: 26345723 [TBL] [Abstract][Full Text] [Related]
18. Particle design of poorly water-soluble drug substances using supercritical fluid technologies. Yasuji T; Takeuchi H; Kawashima Y Adv Drug Deliv Rev; 2008 Feb; 60(3):388-98. PubMed ID: 18068261 [TBL] [Abstract][Full Text] [Related]
19. Dissolution Improvement of Progesterone and Testosterone via Impregnation on Mesoporous Silica Using Supercritical Carbon Dioxide. Ajiboye AL; Jacopin A; Mattern C; Nandi U; Hurt A; Trivedi V AAPS PharmSciTech; 2022 Nov; 23(8):302. PubMed ID: 36385204 [TBL] [Abstract][Full Text] [Related]
20. Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology. Wei ZJ; Liao AM; Zhang HX; Liu J; Jiang ST Bioresour Technol; 2009 Sep; 100(18):4214-9. PubMed ID: 19414250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]