BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22993210)

  • 1. MyRIP interaction with MyoVa on secretory granules is controlled by the cAMP-PKA pathway.
    Brozzi F; Lajus S; Diraison F; Rajatileka S; Hayward K; Regazzi R; Molnár E; Váradi A
    Mol Biol Cell; 2012 Nov; 23(22):4444-55. PubMed ID: 22993210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism of myosin Va recruitment to dense core secretory granules.
    Brozzi F; Diraison F; Lajus S; Rajatileka S; Philips T; Regazzi R; Fukuda M; Verkade P; Molnár E; Váradi A
    Traffic; 2012 Jan; 13(1):54-69. PubMed ID: 21985333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of the Rab27 binding protein Slac2c/MyRIP in insulin exocytosis.
    Waselle L; Coppola T; Fukuda M; Iezzi M; El-Amraoui A; Petit C; Regazzi R
    Mol Biol Cell; 2003 Oct; 14(10):4103-13. PubMed ID: 14517322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myrip uses distinct domains in the cellular activation of myosin VA and myosin VIIA in melanosome transport.
    Ramalho JS; Lopes VS; Tarafder AK; Seabra MC; Hume AN
    Pigment Cell Melanoma Res; 2009 Aug; 22(4):461-73. PubMed ID: 19317802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myosin Va transports dense core secretory vesicles in pancreatic MIN6 beta-cells.
    Varadi A; Tsuboi T; Rutter GA
    Mol Biol Cell; 2005 Jun; 16(6):2670-80. PubMed ID: 15788565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between MyRIP and the actin cytoskeleton regulates Weibel-Palade body trafficking and exocytosis.
    Conte IL; Hellen N; Bierings R; Mashanov GI; Manneville JB; Kiskin NI; Hannah MJ; Molloy JE; Carter T
    J Cell Sci; 2016 Feb; 129(3):592-603. PubMed ID: 26675235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myosin Va mediates Rab8A-regulated GLUT4 vesicle exocytosis in insulin-stimulated muscle cells.
    Sun Y; Chiu TT; Foley KP; Bilan PJ; Klip A
    Mol Biol Cell; 2014 Apr; 25(7):1159-70. PubMed ID: 24478457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rab27A and its effector MyRIP link secretory granules to F-actin and control their motion towards release sites.
    Desnos C; Schonn JS; Huet S; Tran VS; El-Amraoui A; Raposo G; Fanget I; Chapuis C; Ménasché G; de Saint Basile G; Petit C; Cribier S; Henry JP; Darchen F
    J Cell Biol; 2003 Nov; 163(3):559-70. PubMed ID: 14610058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH oxidase NOX2 defines a new antagonistic role for reactive oxygen species and cAMP/PKA in the regulation of insulin secretion.
    Li N; Li B; Brun T; Deffert-Delbouille C; Mahiout Z; Daali Y; Ma XJ; Krause KH; Maechler P
    Diabetes; 2012 Nov; 61(11):2842-50. PubMed ID: 22933115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myrip couples the capture of secretory granules by the actin-rich cell cortex and their attachment to the plasma membrane.
    Huet S; Fanget I; Jouannot O; Meireles P; Zeiske T; Larochette N; Darchen F; Desnos C
    J Neurosci; 2012 Feb; 32(7):2564-77. PubMed ID: 22396429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myosin va mediates docking of secretory granules at the plasma membrane.
    Desnos C; Huet S; Fanget I; Chapuis C; Böttiger C; Racine V; Sibarita JB; Henry JP; Darchen F
    J Neurosci; 2007 Sep; 27(39):10636-45. PubMed ID: 17898234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion.
    Gheni G; Ogura M; Iwasaki M; Yokoi N; Minami K; Nakayama Y; Harada K; Hastoy B; Wu X; Takahashi H; Kimura K; Matsubara T; Hoshikawa R; Hatano N; Sugawara K; Shibasaki T; Inagaki N; Bamba T; Mizoguchi A; Fukusaki E; Rorsman P; Seino S
    Cell Rep; 2014 Oct; 9(2):661-73. PubMed ID: 25373904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HAP1 helps to regulate actin-based transport of insulin-containing granules in pancreatic β cells.
    Wang Z; Peng T; Wu H; He J; Li H
    Histochem Cell Biol; 2015 Jul; 144(1):39-48. PubMed ID: 25744490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Type II PKAs are anchored to mature insulin secretory granules in INS-1 β-cells and required for cAMP-dependent potentiation of exocytosis.
    Villalpando S; Cazevieille C; Fernandez A; Lamb NJ; Hani EH
    Biochimie; 2016 Jun; 125():32-41. PubMed ID: 26898328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. cAMP-dependent phosphorylation of PTB1 promotes the expression of insulin secretory granule proteins in beta cells.
    Knoch KP; Meisterfeld R; Kersting S; Bergert H; Altkrüger A; Wegbrod C; Jäger M; Saeger HD; Solimena M
    Cell Metab; 2006 Feb; 3(2):123-34. PubMed ID: 16459313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of zipcode binding protein 1 transport dynamics in axons by myosin Va.
    Nalavadi VC; Griffin LE; Picard-Fraser P; Swanson AM; Takumi T; Bassell GJ
    J Neurosci; 2012 Oct; 32(43):15133-41. PubMed ID: 23100434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct and opposing roles for Rab27a/Mlph/MyoVa and Rab27b/Munc13-4 in mast cell secretion.
    Singh RK; Mizuno K; Wasmeier C; Wavre-Shapton ST; Recchi C; Catz SD; Futter C; Tolmachova T; Hume AN; Seabra MC
    FEBS J; 2013 Feb; 280(3):892-903. PubMed ID: 23281710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The adaptor protein melanophilin regulates dynamic myosin-Va:cargo interaction and dendrite development in melanocytes.
    Robinson CL; Evans RD; Sivarasa K; Ramalho JS; Briggs DA; Hume AN
    Mol Biol Cell; 2019 Mar; 30(6):742-752. PubMed ID: 30699046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucotoxicity inhibits cAMP-protein kinase A-potentiated glucose-stimulated insulin secretion in pancreatic β-cells.
    Kong X; Yan D; Wu X; Guan Y; Ma X
    J Diabetes; 2015 May; 7(3):378-85. PubMed ID: 24981285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucagon-like peptide 1 potentiates glucotoxicity-diminished insulin secretion via stimulation of cAMP-PKA signaling in INS-1E cells and mouse islets.
    Luo G; Kong X; Lu L; Xu X; Wang H; Ma X
    Int J Biochem Cell Biol; 2013 Feb; 45(2):483-90. PubMed ID: 23220045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.