BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 22993422)

  • 21. Glutamatergic synapse formation is promoted by α7-containing nicotinic acetylcholine receptors.
    Lozada AF; Wang X; Gounko NV; Massey KA; Duan J; Liu Z; Berg DK
    J Neurosci; 2012 May; 32(22):7651-61. PubMed ID: 22649244
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of sensory experience on the glutamatergic synapse.
    Cooper DD; Frenguelli BG
    Neuropharmacology; 2021 Aug; 193():108620. PubMed ID: 34048870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Astroglia-Derived BDNF and MSK-1 Mediate Experience- and Diet-Dependent Synaptic Plasticity.
    Lalo U; Bogdanov A; Moss GW; Pankratov Y
    Brain Sci; 2020 Jul; 10(7):. PubMed ID: 32708382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Defective synaptic transmission and structure in the dentate gyrus and selective fear memory impairment in the Rsk2 mutant mouse model of Coffin-Lowry syndrome.
    Morice E; Farley S; Poirier R; Dallerac G; Chagneau C; Pannetier S; Hanauer A; Davis S; Vaillend C; Laroche S
    Neurobiol Dis; 2013 Oct; 58():156-68. PubMed ID: 23742761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential involvement of beta3 integrin in pre- and postsynaptic forms of adaptation to chronic activity deprivation.
    Cingolani LA; Goda Y
    Neuron Glia Biol; 2008 Aug; 4(3):179-87. PubMed ID: 19758485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TrkB phosphorylation by Cdk5 is required for activity-dependent structural plasticity and spatial memory.
    Lai KO; Wong AS; Cheung MC; Xu P; Liang Z; Lok KC; Xie H; Palko ME; Yung WH; Tessarollo L; Cheung ZH; Ip NY
    Nat Neurosci; 2012 Nov; 15(11):1506-15. PubMed ID: 23064382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase.
    Tong L; Prieto GA; Kramár EA; Smith ED; Cribbs DH; Lynch G; Cotman CW
    J Neurosci; 2012 Dec; 32(49):17714-24. PubMed ID: 23223292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decrease in calcium concentration triggers neuronal retinoic acid synthesis during homeostatic synaptic plasticity.
    Wang HL; Zhang Z; Hintze M; Chen L
    J Neurosci; 2011 Dec; 31(49):17764-71. PubMed ID: 22159093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Homeostatic synaptic scaling is regulated by protein SUMOylation.
    Craig TJ; Jaafari N; Petrovic MM; Jacobs SC; Rubin PP; Mellor JR; Henley JM
    J Biol Chem; 2012 Jun; 287(27):22781-8. PubMed ID: 22582390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contrasting Functions of Mitogen- and Stress-activated Protein Kinases 1 and 2 in Recognition Memory and In Vivo Hippocampal Synaptic Transmission.
    Morice E; Enderlin V; Gautron S; Laroche S
    Neuroscience; 2021 May; 463():70-85. PubMed ID: 33722673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MSK1 regulates environmental enrichment-induced hippocampal plasticity and cognitive enhancement.
    Karelina K; Hansen KF; Choi YS; DeVries AC; Arthur JS; Obrietan K
    Learn Mem; 2012 Oct; 19(11):550-60. PubMed ID: 23077336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GluA4 subunit of AMPA receptors mediates the early synaptic response to altered network activity in the developing hippocampus.
    Huupponen J; Atanasova T; Taira T; Lauri SE
    J Neurophysiol; 2016 Jun; 115(6):2989-96. PubMed ID: 26961102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of NMDA receptor transport: a KIF17-cargo binding/releasing underlies synaptic plasticity and memory in vivo.
    Yin X; Feng X; Takei Y; Hirokawa N
    J Neurosci; 2012 Apr; 32(16):5486-99. PubMed ID: 22514311
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fragile X protein FMRP is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid.
    Soden ME; Chen L
    J Neurosci; 2010 Dec; 30(50):16910-21. PubMed ID: 21159962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epigenetic enhancement of BDNF signaling rescues synaptic plasticity in aging.
    Zeng Y; Tan M; Kohyama J; Sneddon M; Watson JB; Sun YE; Xie CW
    J Neurosci; 2011 Dec; 31(49):17800-10. PubMed ID: 22159096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site-specific synapsin I phosphorylation participates in the expression of post-tetanic potentiation and its enhancement by BDNF.
    Valente P; Casagrande S; Nieus T; Verstegen AM; Valtorta F; Benfenati F; Baldelli P
    J Neurosci; 2012 Apr; 32(17):5868-79. PubMed ID: 22539848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A requirement for nuclear factor-kappaB in developmental and plasticity-associated synaptogenesis.
    Boersma MC; Dresselhaus EC; De Biase LM; Mihalas AB; Bergles DE; Meffert MK
    J Neurosci; 2011 Apr; 31(14):5414-25. PubMed ID: 21471377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MSK1 regulates transcriptional induction of Arc/Arg3.1 in response to neurotrophins.
    Hunter CJ; Remenyi J; Correa SA; Privitera L; Reyskens KMSE; Martin KJ; Toth R; Frenguelli BG; Arthur JSC
    FEBS Open Bio; 2017 Jun; 7(6):821-834. PubMed ID: 28593137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitogen- and stress-activated protein kinase-1 activation is involved in melanocortin-induced BDNF expression in Neuro2a neuronal cells.
    Zhang W; Wu Y
    Neuroreport; 2020 Oct; 31(14):1007-1014. PubMed ID: 32815825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The nuclear kinase mitogen- and stress-activated protein kinase 1 regulates hippocampal chromatin remodeling in memory formation.
    Chwang WB; Arthur JS; Schumacher A; Sweatt JD
    J Neurosci; 2007 Nov; 27(46):12732-42. PubMed ID: 18003853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.