BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22993509)

  • 1. A physiologically based, multi-scale model of skeletal muscle structure and function.
    Röhrle O; Davidson JB; Pullan AJ
    Front Physiol; 2012; 3():358. PubMed ID: 22993509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin-titin interaction.
    Heidlauf T; Klotz T; Rode C; Altan E; Bleiler C; Siebert T; Röhrle O
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1423-1437. PubMed ID: 26935301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale modeling of skeletal muscle tissues based on analytical and numerical homogenization.
    Spyrou LA; Brisard S; Danas K
    J Mech Behav Biomed Mater; 2019 Apr; 92():97-117. PubMed ID: 30677705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting electromyographic signals under realistic conditions using a multiscale chemo-electro-mechanical finite element model.
    Mordhorst M; Heidlauf T; Röhrle O
    Interface Focus; 2015 Apr; 5(2):20140076. PubMed ID: 25844148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Physiology-Guided Classification of Active-Stress and Active-Strain Approaches for Continuum-Mechanical Modeling of Skeletal Muscle Tissue.
    Klotz T; Bleiler C; Röhrle O
    Front Physiol; 2021; 12():685531. PubMed ID: 34408657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling motor units in 3D: influence on muscle contraction and joint force via a proof of concept simulation.
    Saini H; Klotz T; Röhrle O
    Biomech Model Mechanobiol; 2023 Apr; 22(2):593-610. PubMed ID: 36572787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of Hill-type muscle models in relation to neuromuscular recruitment and force-velocity properties: predicting patterns of in vivo muscle force.
    Biewener AA; Wakeling JM; Lee SS; Arnold AS
    Integr Comp Biol; 2014 Dec; 54(6):1072-83. PubMed ID: 24928073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A muscle's force depends on the recruitment patterns of its fibers.
    Wakeling JM; Lee SS; Arnold AS; de Boef Miara M; Biewener AA
    Ann Biomed Eng; 2012 Aug; 40(8):1708-20. PubMed ID: 22350666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account.
    Lamsfuss J; Bargmann S
    J Mech Behav Biomed Mater; 2021 Oct; 122():104670. PubMed ID: 34274750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biophysically guided constitutive law of the musculotendon-complex: modelling and numerical implementation in Abaqus.
    Saini H; Röhrle O
    Comput Methods Programs Biomed; 2022 Nov; 226():107152. PubMed ID: 36194967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models of recruitment and rate coding organization in motor-unit pools.
    Fuglevand AJ; Winter DA; Patla AE
    J Neurophysiol; 1993 Dec; 70(6):2470-88. PubMed ID: 8120594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A continuum model for skeletal muscle contraction at homogeneous finite deformations.
    Sharifimajd B; Stålhand J
    Biomech Model Mechanobiol; 2013 Oct; 12(5):965-73. PubMed ID: 23184063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale modeling of skeletal muscle to explore its passive mechanical properties and experiments verification.
    Liu F; Wang M; Ma Y
    Math Biosci Eng; 2022 Jan; 19(2):1251-1279. PubMed ID: 35135203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From single muscle fiber to whole muscle mechanics: a finite element model of a muscle bundle with fast and slow fibers.
    Marcucci L; Reggiani C; Natali AN; Pavan PG
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1833-1843. PubMed ID: 28584973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Efficient Modelling-Simulation-Analysis Workflow to Investigate Stump-Socket Interaction Using Patient-Specific, Three-Dimensional, Continuum-Mechanical, Finite Element Residual Limb Models.
    Ramasamy E; Avci O; Dorow B; Chong SY; Gizzi L; Steidle G; Schick F; Röhrle O
    Front Bioeng Biotechnol; 2018; 6():126. PubMed ID: 30283777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Electromechanical Delay Based on a Biophysical Multi-Scale Skeletal Muscle Model.
    Schmid L; Klotz T; Siebert T; Röhrle O
    Front Physiol; 2019; 10():1270. PubMed ID: 31649554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the electrical activity of skeletal muscle tissue using a multi-domain approach.
    Klotz T; Gizzi L; Yavuz UŞ; Röhrle O
    Biomech Model Mechanobiol; 2020 Feb; 19(1):335-349. PubMed ID: 31529291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does a two-element muscle model offer advantages when estimating ankle plantar flexor forces during human cycling?
    Lai AKM; Arnold AS; Biewener AA; Dick TJM; Wakeling JM
    J Biomech; 2018 Feb; 68():6-13. PubMed ID: 29287843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling Mouse Soleus Muscle Contraction.
    Palladino JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2311-2314. PubMed ID: 33018470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recruitment of triceps surae motor units in the decerebrate cat. II. Heterogeneity among soleus motor units.
    Sokoloff AJ; Cope TC
    J Neurophysiol; 1996 May; 75(5):2005-16. PubMed ID: 8734599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.